Solving Recurrence Relations

So what does
$T(n) = T(n-1) + n$
look like anyway?
Recurrence Relations

• Can easily describe the runtime of recursive algorithms
• Can then be expressed in a closed form (not defined in terms of itself)

• Consider the linear search:
Eg. 1 - Linear Search

• Recursively
• Look at an element (constant work, c), then search the remaining elements…

\[T(n) = T(n-1) + c \]

• “The cost of searching n elements is the cost of looking at 1 element, plus the cost of searching n-1 elements”
Linear Search (cont)

Caveat:

- You need to convince yourself (and others) that the single step, examining an element, *is* done in constant time.
- Can I get to the i^{th} element in constant time, either directly, or from the $(i-1)^{th}$ element?
- Look at the code
Methods of Solving Recurrence Relations

- Substitution (we’ll work on this one in this lecture)
- Accounting method
- Draw the recursion tree, think about it
- The Master Theorem*
- Guess at an upper bound, prove it

* See Cormen, Leiserson, & Rivest, Introduction to Algorithms
Linear Search (cont.)

- We’ll “unwind” a few of these

\[T(n) = T(n-1) + c \] \hspace{1cm} (1)

But, \[T(n-1) = T(n-2) + c \], from above

Substituting back in:

\[T(n) = T(n-2) + c + c \]

Gathering like terms

\[T(n) = T(n-2) + 2c \] \hspace{1cm} (2)
Linear Search (cont.)

- Keep going:
 \[T(n) = T(n-2) + 2c \]
 \[T(n-2) = T(n-3) + c \]
 \[T(n) = T(n-3) + c + 2c \]
 \[T(n) = T(n-3) + 3c \] (3)

- One more:
 \[T(n) = T(n-4) + 4c \] (4)
Looking for Patterns

• Note, the intermediate results are enumerated

• We need to pull out patterns, to write a general expression for the k^{th} unwinding
 – This requires practice. It is a little bit art. The brain learns patterns, over time. Practise.

• Be careful while simplifying after substitution
Eg. 1 – list of intermediates

<table>
<thead>
<tr>
<th>Result at i^{th} unwinding</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = T(n-1) + 1c$</td>
<td>1</td>
</tr>
<tr>
<td>$T(n) = T(n-2) + 2c$</td>
<td>2</td>
</tr>
<tr>
<td>$T(n) = T(n-3) + 3c$</td>
<td>3</td>
</tr>
<tr>
<td>$T(n) = T(n-4) + 4c$</td>
<td>4</td>
</tr>
</tbody>
</table>
Linear Search (cont.)

• An expression for the kth unwinding:
 \[T(n) = T(n-k) + kc \]

• We have 2 variables, k and n, but we have a relation

• \(T(d) \) is constant (can be determined) for some constant d (we know the algorithm)

• Choose any convenient # to stop.
Linear Search (cont.)

• Let’s decide to stop at $T(0)$. When the list to search is empty, you’re done…

• 0 is convenient, in this example…

 Let $n-k = 0 \implies n=k$

• Now, substitute n in everywhere for k:

 $T(n) = T(n-n) + nc$

 $T(n) = T(0) + nc = nc + c_0 = O(n)$

 ($T(0)$ is some constant, c_0)
Binary Search

• Algorithm – “check middle, then search lower ½ or upper ½”

• \(T(n) = T(n/2) + c \)
 where \(c \) is some constant, the cost of checking the middle…

• Can we really find the middle in constant time? (Make sure.)
Binary Search (cont)

Let’s do some quick substitutions:

\[T(n) = T(n/2) + c \] (1)

but \(T(n/2) = T(n/4) + c \), so

\[T(n) = T(n/4) + c + c \]

\[T(n) = T(n/4) + 2c \] (2)

\[T(n/4) = T(n/8) + c \]

\[T(n) = T(n/8) + c + 2c \]

\[T(n) = T(n/8) + 3c \] (3)
Binary Search (cont.)

<table>
<thead>
<tr>
<th>Result at i^{th} unwinding</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = T(n/2) + c$</td>
<td>1</td>
</tr>
<tr>
<td>$T(n) = T(n/4) + 2c$</td>
<td>2</td>
</tr>
<tr>
<td>$T(n) = T(n/8) + 3c$</td>
<td>3</td>
</tr>
<tr>
<td>$T(n) = T(n/16) + 4c$</td>
<td>4</td>
</tr>
</tbody>
</table>
Binary Search (cont)

• We need to write an expression for the k^{th} unwinding (in n & k)
 – Must find patterns, changes, as $i=1, 2, \ldots, k$
 – This can be the hard part
 – Do not get discouraged! Try something else…
 – We’ll re-write those equations…

• We will then need to relate n and k
Binary Search (cont)

<table>
<thead>
<tr>
<th>Result at i^{th} unwinding</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n)$ = $T(n/2) + c$</td>
<td>1</td>
</tr>
<tr>
<td>$T(n)$ = $T(n/4) + 2c$</td>
<td>2</td>
</tr>
<tr>
<td>$T(n)$ = $T(n/8) + 3c$</td>
<td>3</td>
</tr>
<tr>
<td>$T(n)$ = $T(n/16) + 4c$</td>
<td>4</td>
</tr>
</tbody>
</table>
Binary Search (cont)

- After k unwindings:
 \[T(n) = T(n/2^k) + kc \]
- Need a convenient place to stop unwinding – need to relate k & n
- Let’s pick \(T(0) = c_0 \) So,
 \[n/2^k = 0 \implies n=0 \]
 Hmm. Easy, but not real useful…
Binary Search (cont)

• Okay, let’s consider \(T(1) = c_0 \)
• So, let:

\[
\frac{n}{2^k} = 1 \Rightarrow \\
n = 2^k \Rightarrow \\
k = \log_2 n = \lg n
\]
Binary Search (cont.)

- Substituting back in (getting rid of \(k \)):
 \[
 T(n) = T(1) + c \log(n)
 \]
 \[
 = c \log(n) + c_0
 \]
 \[
 = O(\log(n))
 \]