Automated Categorization of Drosophila Learning and Memory Behaviors using Video Analysis
Md. Alimoor Reza¹, David E. Breen¹, Aleister J. Saunders², Daniel Marenda²
1. Department of Computer Science, 2. Department of Biology

Introduction
• The goal of this project is to create an automated method for characterizing the learning and memory behavior of fruit flies by analyzing video of their movements.
• The ability to study learning and memory behavior in living organisms has significantly increased our understanding of what genes affect this behavior, allowing for the rational design of therapeutics in diseases that affect cognition.
• The fruit fly, Drosophila melanogaster, is a well established model organism used to study the mechanisms of both learning and memory in vivo.
• The techniques used to assess the behavior of flies, while powerful, suffer from a lack of speed and quantification.
• The method is being developed to replace and improve a labor-intensive, subjective evaluation process with one that is automated, consistent and reproducible; thus allowing for robust, high-throughput analysis of large quantities of video data.

Pipeline
• An input video contains 3 to 6 cells; where each cell holds a pair of male and female flies.
• Individual frames are extracted from the video.
• The frames are cropped to isolate each cell.
• Individual flies are identified in all of the frames for each cell.
• The area of each fly is calculated.
• The flies' motion are tracked.
• Once the flies are identified and tracked, various geometric measures are computed.
• The measures are computed for numerous experimental samples and produces a high dimensional feature vector that quantifies the behavior of the flies.
• Clustering techniques, e.g., k-means clustering, may then be applied to the feature vectors in order to computationally classify each specimen. The pipeline of the process:

Segmentation and Filtering
• An input video sampled at a rate of 30 frames per second (using Quicktime software).
• Crop sample frames extracted from video.
• Calculate background image from the first 1000 frames.
• Produce segmented fly images using background subtraction.
• Filter to remove noise and fill holes inside the white regions.
• Frames for Male/Female fly identification and Motion Tracking.

Identifying Male/Female Flies
• A sequence of approximately 18,000 frames, extracted from a video clip, is divided into subsequences after filtering out the noise and filling the holes inside the white regions.
• Male and female flies are identified for each subsequence (greater than 15 frames) where the flies are separated.
• A starting frame is identified in a subsequence. In this frame the distance between the flies is maximum over all frames in the subsequence.

Identifying the Head Direction
• The two regions are tracked by using a frame-to-frame minimum distance assumption.
• The average area of each region is computed over the frames of the subsequence. The region with the larger average size is assumed to be the female fly.
• The head direction vector (HDV) of the starting frame is the central axis (CA) in the direction of VV are computed for all the frames in a subsequence.
• The head direction vector (HDV) of the starting frame is the CA in the velocity vector direction.
• The HDVs in remaining frames are computed from the starting frame's HDV.

Geometric Measures
• The mean and standard deviation are computed for each distribution.

Clustering
• Three types of video clips of 10-minute duration are processed. These are: first 10 minute (First10Min), last 10 minute (Last10Min), and immediate recall 10 minutes (ImmediateRecall10Min). For some fly-pairs, we only have the immediate recall video clips.
• The feature vector consists of 8 numbers: % Frames Fly Looking At, % Frames Flies Together, Mean of Centroid Distance, Std. Dev. of Centroid Distance, Mean of Head Direction Angle, Std. Dev. of Head Direction Angle, Mean of Speed x 10, Std. Dev. of Speed x 10.
• K-means clustering is used for automatic grouping.
• 2-means clustering was run on the difference of First10Min and Last10Min feature vectors.
• The input set consists of 10 samples.

Future Work
• Process and analyze additional video clips.
• Perform clustering on individual measures.
• Define a single quantity based on our geometric measures that is equivalent to the current Courtship Index (CI) used to characterize fruit fly behavior.

Figure 1: Sample output after fly identification with tracking
Figure 2: Segmentation process with filtering
Figure 3: mth frame is the frame where the two flies are apart in the subsequence between 5th frame and 11th frame
Figure 4: Distribution of the flies' Speeds.
Figure 5: Distribution of the Head Direction Angle between the flies.