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ABSTRACT
Despite advances in software engineering, software faults con-

tinue to cause system downtime. Software faults are difficult to
detect before the system fails, especially since the first symptom
of a fault is often system failure itself.

This paper presents a computational geometry technique and
a supporting tool to tackle the problem of timely fault detection
during the execution of a software application. The approach in-
volves collecting a variety of runtime measurements and building
a geometric enclosure, such as a convex hull, which represents the
normal (i.e., non-failing) operating space of the application being
monitored. When collected runtime measurements are classified
as being outside of the enclosure, the application is considered to
be in an anomalous (i.e., failing) state. This paper presents exper-
imental results that illustrate the advantages of using a computa-
tional geometry approach over the distance based approaches of
Chi-Squared and Mahalanobis distance. Additionally, we present
results illustrating the advantages of using the convex-hull enclo-
sure for fault detection in favor of a simpler enclosure such as a
hyperrectangle

Categories and Subject Descriptors
D.2.7 [Performance of Systems]: Reliability, availability , and

serviceability

General Terms
Reliability, Security

Keywords
Fault tolerance, system monitoring, failure detection

1. INTRODUCTION
Complex software systems have become commonplace in mod-

ern organizations and are considered critical to their daily oper-
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ations. They are expected to run on a diverse set of platforms
while interoperating with a wide variety of other applications and
servers. Although there have been advances in the discipline of
software engineering, faults still regularly cause system downtime.
Downtime of critical applications can create additional work, cause
delays, and lead to financial loss [20]. Faults are difficult to detect
before an executing system reaches a point of failure, as the first
symptom of a fault is often system failure itself. While it is unre-
alistic to expect software to be fault-free, actions such as resetting
the software, quarantining specific software features, or logging
the software’s state prior to the failure for later analysis can be
taken.

This paper describes a novel approach to solving the fault de-
tection problem using computational geometry. The technique has
a training and a detection phase. The training phase involves col-
lecting a variety of runtime measurements, such as CPU time and
heap memory, and uses these measurements to build a geometric
enclosure that represents the normal operating space of the appli-
cation being monitored. During the detection phase, the geometric
enclosure is used to classify runtime measurements. The applica-
tion is considered to be in an anomalous state when the collected
measurements are outside of the geometric enclosure.

A case study is presented to demonstrate the advantage of us-
ing a convex-hull enclosure for fault detection over other geomet-
ric enclosures, such as a hyperrectangle, as well as the distance
based measures of Chi-Square and Mahalanobis distance. This
case study involves eight experiments and each experiment injects
a different fault into an HTTP server. The convex hull method
makes no assumption about any relationship among the different
kinds of measurements, but takes advantage of dependence rela-
tionships if they exist. In the case study the convex-hull enclosure
performed fault detection better than the hyperrectangle enclosure,
which treats measurements as independent. In fact, in our exper-
iments three of the eight faults were detected by the convex-hull
method, but not by the hyperrectangle method. The Chi-squared
approach failed to detect four of the faults and the Mahalanobis
distance based approach failed to classify five of the faults.

Our implementation of this computational geometry approach
to fault detection is named Aniketos after the minor Olympian god,
and son of Heracles, who protected the gates of Mount Olympus
from attack. Although our case study uses only the hyperrectangle
and the convex-hull enclosures, Aniketos supports any type of ge-
ometric enclosure. For example, a sphere or an ellipsoid could be
used in place of a hyperrectangle or a convex hull.

The remainder of the paper is organized as follows: Section 2
describes previous work in autonomic fault detection; Section 3
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Figure 1: During the learning phase Aniketos collects and processesruntime measurements. It then constructs an enclosure
representing the normal execution of the monitored system. During the detection phase Aniketos collects and processes runtime
measurements. Then, each data point (n-tuple of metrics) is classified as normal (black points) if it is inside theenclosure, or
anomalous (white points) if it is outside of the enclosure.

describes the Aniketos approach to fault detection; Section 4 de-
scribes the architecture of the Aniketos fault detection system;
Section 5 describes a case study involving NanoHTTPD [9], a
java-based web server; Section 6 summarizes the results of the
case study; finally Section 7 states our conclusions and plans for
future work.

2. PREVIOUS WORK
Existing approaches to the detection of software faults fall into

two categories, signature-based and anomaly-based [1]. Signature-
based methods detect faults by matching measurements to known
fault signatures.These techniques are used in static fault-checking
software such as the commercial antivirus software McAfee [15]
and Symantec [21], as well as network intrusion detection systems
such as Snort [19] and Netstat [22]. These techniques can also be
used to detect recurring runtime faults [4].

If a set of known faults exists, then training a system to recog-
nize these faults will typically lead to better fault detection. How-
ever, that system is unlikely to recognize faults it has not seen
before. For example, a fault caused by a zero-day virus is unlikely
to be detected by commercial antivirus software because there are
no known patterns to recognize.

Anomaly-based methods learn to recognize the normal runtime
behavior of the monitored system and classify anomalous behav-
ior as potentially faulty. The advantage of using anomaly-based
methods is that they can detect previously unseen faults. However,
they risk incorrectly treating any newly encountered good states as
faulty. This occurs if insufficient training data were supplied. The
rest of the paper will focus on anomaly detection techniques, of
which Aniketos is one.

Typically, anomaly-detection techniques begin by collecting
sensor measurements of a normally behaving system. Then, they
construct a representation of the monitored system and compare
any future measurements against that representation. A naïve ap-
proach assumes that all metrics are independent and determines

the safe operating range for each of them. In other words, dur-
ing the learning phase, this method will record the maximum and
minimum safe values of each metric and then classify the system
as faulty when any of the measurements fall outside of the interval
determined by these values.

While the naïve approach is capable of detecting some faults,
it can fail when the assumption that the metrics are independent is
incorrect. Therefore, more sophisticated fault detection techniques
assume that there are relationships between metrics. Many of these
techniques use statistical machine learning. A common approach
is to use metric correlations to quantify a monitored system. Dur-
ing detection, if the correlations between metrics becomes signifi-
cantly different from the learned correlations, the system is classi-
fied to be in a faulty state [10, 24, 8, 12].

Other fault-detection techniques consider the order of events
and use statistical methods based on times series. These include
Markov-based methods [5, 6] and N-gram analysis [11]. Further-
more, other anomaly-detection techniques use statistical methods
based on decision trees [7, 8] or combine statistical models into an
ensemble detection approach [23].

3. THE ANIKETOS APPROACH
Aniketos employs an anomaly-detection approach and there-

fore can detect faults it has not seen before. However, unlike the
previously discussed anomaly-detection methods, Aniketos does
not use statistical machine learning. Instead, it takes a novel ap-
proach that uses computational geometry and works well indepen-
dent of whether the metrics are correlated or not.

Figure 1 illustrates the Aniketos fault-detection technique, which
consists of a training phase and a detection phase. During the
training phase, Aniketos learns to recognize the normal behavior
of the monitored system by constructing a geometric enclosure
around good measurements. During the detection phase, Aniketos
observes the application measurements and uses the enclosure to
detect anomalous behavior. If Aniketos determines that the moni-



tored system is in a faulty state, it triggers a fault warning signal.
This signal can be sent to a human system administrator or to an
automated fault mitigation system that will attempt to correct the
fault.

3.1 Training Phase
During the training phase, the monitored system executes its

normal behavior and Aniketos collects measurements at one sec-
ond time intervals. Once enough training points are collected,
they are grouped into a training data set. The collection of mea-
surements at runtime continues until Aniketos has enough train-
ing data points to adequately represent the normal behavior of the
monitored system. This training data set is used to construct an
n-dimensional geometric enclosure, wheren is the number of dis-
tinct metrics used (i.e., CPU time, heap memory, etc.).

The problem of knowing when enough training data has been
collected depends on the system being monitored and is related to
the testing adequacy problem [17]. If a system has an extensive
test suite that represents its normal behavior, then the execution
of that test suite will produce a good training data set. It may
also be beneficial to create the training data set from observations
collected on a deployed system. Doing so creates a training set
that captures how the system is typically used. To collect a rep-
resentative training data set from a deployed system, the training
period should include the full spectrum of conditions under which
the system normally operates. For example, this paper’s case study
uses a static mirror of the Drexel University Computer Science De-
partment website. To capture normal system behavior, Aniketos
collected measurements while a test system served requests that
were played back from logs that were collected when the produc-
tion web server was being used over a one week period. Because
the amount and rate of HTTP requests varied with the days of the
week, a full week of execution was used to collect a representative
training data set.

3.2 Detection Phase
Once a geometric enclosure is constructed, it is used to detect

faulty behavior. Each data point (i.e.,n-tuple ofn metric measure-
ments) outside of the enclosure is labeled anomalous. Data points
outside of the enclosure when the system is in a normal state are
referred to asfalse positives. The percentage of false positives dur-
ing a given time period is referred to as the false positive rate. In
the case study the false positive rate was between 2% and 3%.

To avoid sending false fault-warning signals, Aniketos uses a
time smoothing method analogous to a capacitor. The capacitor
method keeps track of a charge value which is initialized to 0.
Each time a point is classified as anomalous, the charge value is
incremented by 1. Additionally, once the charge value is greater
than 0, it begins to slowly discharge. If the charge grows larger
than a threshold, a fault-warning signal is issued. If the occur-
rences of anomalies is low during a time period, the charge will
not grow enough to trigger a fault warning. Because Aniketos
samples at discrete intervals, the charge is approximated using the
following equation:

Ct =

t
∑

i=t−p

d
t−i

ci

In this equationCt is the charge at timet, ci is 1 if the data point at
time i is outside of the enclosure and 0 otherwise,p is the number
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Figure 2: (a) presents the smallest rectangle constructed
around a training data set. Note that the rectangle overesti-
mates the actual shape of the normal space. (b) presents a
convex hull constructed around the same training data set as
in (a). Note that hull is a more accurate representation of the
actual normal space.

of successive data points considered, andd is the discount rate.
The discount rate must be greater than 0 and less than 1.

3.3 Geometric Enclosures
The naïve method described in Section 2 generates a geometric

enclosure that is a hyperrectangle inn-dimensional space where
each dimension represents one ofn metrics. For example, given
2 metrics, A and B, if the safe range for metric A is 5 to 10 and
the safe range for metric B is 10 to 20 the normal behavior of
the system can be represented as a 2-dimensional rectangle with
the vertices (5,10), (5,20), (10,20), and (10,10). Any data point
that falls within that rectangle, for example (7,15), is classified as
normal. Any metric that falls outside of the rectangle, for example
(15,15), is classified as anomalous. In practice, usingn metrics
results inn-dimensional enclosures embedded inn-dimensional
Euclidean space.

Hyperrectangle enclosures often overestimate the normal op-
erating region for an application, as demonstrated in Figure 2a.
Better results can be achieved if a more compact enclosure con-
taining the safe data points is used; for example, a convex hull, as
demonstrated in Figure 2b. The convex hull of a point set is the
smallest convex polygon that contains all of the points. A convex
polygon is a polygon such that for every two points inside the poly-
gon, the straight line segment between those points is also inside of
the polygon. A convex hull for a set of points in one-dimensional
space is a line segment between the largest and smallest values.
In two-dimensional space one can think of each point as a peg on
a board and the convex hull as the interior of a rubber band that
snaps around all of those pegs. In three-dimensional space one
can think of the convex hull as the interior of an elastic membrane
stretched around points.

If there is a dependency between metrics then the convex hull
will be smaller than the hyperrectangle and may produce better
detection results. Any faults detected by the hyperrectangle will be
detected by the convex hull because the convex hull is subsumed
by the hyperrectangle. The convex hull may detect faults faster
than the hyperrectangle but never slower and the convex hull may
detect faults that the hyperrectangle cannot detect.

The convex-hull method also has advantages over existing meth-
ods that use only metric correlations. Those methods cannot make
use of independent metrics, whereas the convex-hull method can
make use of both dependent and independent metrics. Note that
Aniketos does not require any prior knowledge that metrics are
correlated. Correlation methods usually capture dependencies be-
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Figure 3: The current implementation of Aniketos has two
components. JSkopos is a wrapper around Java applica-
tions that collects sensor measurements directly from the JVM
using JMX. JSkopos registers with the Aniketos server and
streams sensor measurements at a sample rate of one per sec-
ond. The Aniketos server uses the measurement stream to
learn the normal behavior of the system by constructing mul-
tidimensional geometric enclosures. Once the normal behav-
ior is learned, the Aniketos server uses the incoming stream to
classify the application being monitored as operating normally
or not.

tween two or three metrics. Using the convex-hull method we have
seen instances where fault detection relied on the dependencies be-
tween as many as five metrics.

If a correlation between a set of metrics is known to be useful
for detection, it can be used as a dimension in the convex hull in
addition to the dimensions that correspond to the other metrics.

4. ANIKETOS ARCHITECTURE
The Aniketos system comprises two components, the Skopos

wrappers and the Aniketos server. The Skopos wrappers monitor
applications and transmit collected measurements to the Aniketos
server via the Skopos Protocol. The Aniketos server processes data
and determines if the application being monitored is operating as
expected.

Currently Aniketos provides JSkopos for monitoring applica-
tions running on the Sun Java Virtual Machine (JVM) [14]. De-
velopers can provide sensors that are specific to the application
being monitored and use the Skopos Protocol to create their own
wrappers for any language.

Aniketos is designed to have minimal impact on monitored ap-
plications. The most computationally expensive operations, such
as constructing multidimensional geometric enclosures, are han-
dled by the Aniketos server, which can run on a separate machine.
The Skopos wrappers must be executed on the same machines as
the applications being monitored, and so they are developed to be
lightweight processes. Depending on the usage patterns of Nano-
HTTPD, JSkopos adds anywhere from a 3.3% to 11.1% overhead
with all sensors activated. When a single client sequentially re-
quested a small text file thousands of times the overhead of JSko-
pos was 4.2% on average. This decreased to 3.3% on average
when a large PDF file was requested. When the same experi-
ments were run with 10 concurrent clients repeatedly requesting
the same file, the overhead increased to 11.1% for the small text
file and to 7.4% for the large PDF file. JSkopos automatically
records when a new socket is created or closed. In NanoHTTPD, a

new socket is opened for every HTTP request. As a result, sockets
are opened and closed at a typically faster rate when smaller files
are requested. This is evident in the increase in overhead when
smaller files are requested.

In addition to the aforementioned benefits, Aniketos provides
developers with control in choosing how their applications are
monitored. While there may be some overlap, the set of sensors
useful in monitoring a web server will be different from the set
of sensors useful in monitoring an image-processing application.
Developers are the ideal group to select the sensors most pertinent
to their applications.

Figure 3 describes the interactions between the Aniketos server,
the JSkopos wrapper, and a Java application being monitored. JSko-
pos uses Java Management Extensions (JMX) [13] to collect sen-
sor measurements from the monitored JVM. After registering with
the server, JSkopos streams the measurement data to the Aniketos
server at a rate of one set of measurements per second. Currently,
JSkopos is able to extract twenty-seven measurements for kinds of
metrics. We chose the following seven most pertinent for monitor-
ing a web server.

1. Loaded Class Count: Number of classes loaded in the JVM.

2. Total Memory : Amount of heap and non-heap memory
used by the JVM.

3. TCP Bytes Read and Written: Number of bytes read and
written using TCP across all sockets.

4. TCP Accept Sockets Alive: Number of accepted sockets
open (clients connected to this application’s server socket).

5. CPU Time Average: Average CPU time percentage across
all threads executed by the JVM.

6. Stack Depth Average: Average stack depth of all threads
currently running.

7. Thread Count: Number of threads currently running in the
JVM.

The set of metrics had to be reduced to seven due to a limita-
tion in the QHull [2] library used by Aniketos. Note that this is not
a limit of the Aniketos detection technique. Many of the unused
metrics were either irrelevant or redundant for the task of monitor-
ing a web server. For example, UDP sensors are irrelevant because
that protocol is never used by the web server being monitored. In
addition, several CPU and memory metrics are highly correlated
with one another and thus are redundant. The Aniketos technique
can use as many metrics as the user wants, but currently it is ar-
tificially limited to seven metrics because of the limitations of the
QHull library.

5. EXPERIMENTAL SETUP
To evaluate the technique presented in this paper a case study

was conducted that involves monitoring NanoHTTPD, a Java-based
web server. Figure 4 presents the design of the testbed used in this
case study. One machine is used to host the Aniketos server and
NanoHTTPD. and another machine manages clients that request
resources from NanoHTTPD. JSkopos is used to monitor NanoH-
TTPD’s execution and report measurements to the Aniketos server.
The Aniketos server stores the gathered data and processes it using
QHull.
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Figure 4: The experimental testbed contains two machines.
The first is used to run Aniketos and NanoHTTPD. The sec-
ond houses clients that access NanoHTTPD.

NanoHTTPD was chosen for this case study because it is open
source and manageable in size, thus making it easy to modify and
to inject with faults. It is a web server that hosts static content. Na-
noHTTPD spawns a new thread for each HTTP client request. If a
thread crashes or goes into an infinite loop, it does not compromise
NanoHTTPD’s ability to serve other files.

The goal of this case study is to evaluate the performance of
the Aniketos detection technique in a realistic scenario. To this
end, it uses resources and access patterns of the Drexel Univer-
sity Computer Science Department website. Nine weeks worth of
website access logs were collected and all resources accessed in
those logs were extracted and converted into static HTML pages.
Out of the nine weeks of logs, three weeks were chosen at random
to be used in the case study. These were replayed against the stat-
ically hosted version of the website and provided the case study
with realistic workload access patterns.

One week of request logs was used to generate hyperrectan-
gle and convex hull enclosures representing the normal operating
space of NanoHTTPD. Another week of request logs was used to
evaluate how well the enclosures classify fault-free data. A third
week of request logs was used as background activity during thev
fault injection experiments.

NanoHTTPD was injected with eight faults. These faults cap-
ture coding errors as well as security vulnerabilities and attacks.
Two of the most common codding errors are the Infinite-Loop and
the Infinite-Recursion faults. An Infinite-Loop fault is presented as
awhile loop that iterates indefinitely. Two versions of this fault
were created. One in which each iteration of the loop does noth-
ing, and the second in which each iteration of the loop performs a
sleep operation for 100ms. The goal of the Slow-Infinite-Loop
fault is to create a more realistic scenario in which an infinite-
loop is not simply a drain on the CPU resource. Similar to the
Infinite-Loop fault, the Infinite-Recursion fault also has two ver-
sions, a regular and a slow one that performs asleep operation
for 100ms. An infinite recursion is presented as a function calling
itself until the thread running it crashes due to a Stack Overflow
Error exception.

Another common fault injected into NanoHTTPD was the
Memory-Leak fault. The fault performed a realistic memory leak
and leaked strings containing the requested URLs by adding them

Metric A

M
e
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ic
 B

Figure 5: When a new point is introduced, it has a greater
effect on the rectangle than the convex hull. Black points are
the original points. White point is the most recently added
point. Dashed lines represent the original enclosures. Solid
lines represent new enclosures that include the new point.

to avector stored in memory. The Memory-Leak fault doubled
the size of the leakvector with each request.

Log-explosion [18] is another problem common to the server
environment and was injected into NanoHTTPD. The log-explosion
fault causes NanoHTTPD to continuously write to a log file until
there is no more space left on the hard drive. While this does not
cause the web server to crash, the Log-Explosion fault does cause
a degradation in performance.

In addition to faults due to coding errors, two security attacks
were perpetuated against NanoHTTPD. In the first, NanoHTTPD
was injected with a spambot trojan [3]. Once triggered, the spam-
bot began to send spam email message packets to an outside server
at a rate of three emails per second. Each message was one of three
spam messages chosen at random and varied in length between
166 and 2325 characters each.

The second attack perpetuated against NanoHTTPD was a De
nial-of-Service (DOS) attack [16]. During the DOS attack sev-
eral processes that continuously requested resources from Nano-
HTTPD were launched from two separate machines. The attack
escalated with about 100 new processes created every second. It
continued until NanoHTTPD could no longer process legitimate
requests.

Each fault was triggered by a specific URL request. For exam-
ple, the memory leak fault was triggered by accessing the “mem-
leak” resource via a web browser. Each fault was triggered after
a minimum of one minute of fault-free execution. Each experi-
ment was performed on a clean system, meaning that the Aniketos
server, JSkopos, and NanoHTTPD were all reset between each ex-
periment. Each fault experiment was conducted five times, using
a different segment of fault-free traffic each time. The entire case
study took about three weeks to execute. Most of that time was
spent executing fault-free experiments.

The following section contains the results of these experiments
and demonstrates the relative superiority of the convex-hull method
over the hyperrectangle method.

6. EXPERIMENTAL RESULTS
Two types of experimental results presented in this section.

The first subsection presents the false-positive rates observed dur-
ing the experiments and the second subsection presents perfor-
mance of Aniketos with respect to fault detection. These exper-
iments were designed to compare the performance of the convex-
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Table 1: False-positive results for enclosures constructed fromseven individual twenty-four hour segments taken from one week of
server traffic. Due to the variation in false-positive results, we concluded that a single day of measurements should not be relied on
to construct an enclosure that represents normal system operation.
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Table 2: False-positive results for multiple consecutive-day training sets. For all numbers of daysn, all sets ofn consecutive days
were used. For example, for two-day data sets we built enclosuresfrom Monday and Tuesday, Tuesday and Wednesday, Wednesday
and Thursday and so on. The hyperrectangle approach yielded significantly better results than the convex hull in the experiments
that use training data sets of one to three days. The two enclosures had similar performance in experiments that used four to seven
day training data sets.



Table 3: Fault-detection results for enclosures constructed from a full week of measurements. Of the eight fault experiments,
there are three (Slow Infinite Recursion, Log Explosion, and DOS Attack) where the convex-hull method does not significantly
outperform the hyperrectangle method. The convex-hull method was able to detect three faults that the hyperrectangle method
could not detect. Although the Chi-Square and Mahalanobis distance have better detection time for the faults that they successfully
detect, Chi-Square fails to detect four of the faults and Mahalanobis distance fails to detect five of the faults.
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Figure 6: Because the Slow Infinite Loop can be detected using
only two metrics, that detection process can be illustrated in a
two dimensional figure. The convex-hull method has observed
that when a new thread is created, memory is allocated to han-
dle the request. Therefore, when a new thread is created and
no new memory allocation is observed, the convex-hull method
detects a fault.

hull method to the hyperrectangle method. In the worst case, it
took 37 minutes to construct a convex hull and less than 1 sec-
ond to construct a hyperrectangle. This is a reasonable amount of
time to process seven days of measurement considering that pro-
cessing is done offline and is a one-time setup requirement. In our
case study we collected one sample per second and the worst case
average detection time was 292 microseconds for the convex hull
and 4.6 microseconds for the hyperrectangle. These rates are low
enough to support a 1 second sample rate.

The fault-detection section includes results from two additional
distance based approaches. Both of these approaches depend on a
measure of distance from the mean of the training data. The first
measure is the Chi-Squared statistic, which is defined as

(x− µ)

µ

wherex is an observed value andµ is the mean of the training set.
The second measure is the Mahalanobis distance, which is defined
as

√

(x− µ)TS−1(x− µ)

wherex is an observed value,µ is the mean of the training data
andS is the covariance matrix of the training data.

For both of these distance measures, the mean and covariance
matrix are generated from one week of fault-free training data.
We calculate a safe distance from the mean by finding the largest
distance of any individual point in the training set from the mean.
Any observed point beyond the safe distance is labeled as an anomaly.

The false-positive rate for the distance based approaches is de-
termined by applying them to a second week of fault-free data.



Because the false-positive rates generated by the distance based
approaches are low relative to the geometry based approaches, we
do not apply a smoothing function.

6.1 False-Positive Rate Experiments
Because the convex hull lies inside the hyperrectangle the false-

positive rates for the hyperrectangle will be no higher than the
false-positive rates for the convex hull. Any data points that fall
outside of the hyperrectangle must fall outside of the convex hull.
Therefore, the convex hull false- positive rate cannot be lower
than the hyperrectangle false-positive rate. The convex hull false-
positive rate can be higher than the hyperrectangle false-positive
rate because there may be regions inside the hyperrectangle that
are not inside the convex hull.

Table 1 reports the false-positive results for enclosures con-
structed from seven individual twenty-four hour segments taken
from one week of server traffic. The first column lists the days of
the week, the second column shows the number of HTTP requests
served each day of the week, and the third and forth columns show
the percentage of non-fault data points that were outside of the en-
closures. We expected individual twenty-four hour segments to be
insufficient to capture the normal operating space of NanoHTTPD
hosting the Drexel University Computer Science’s website. This
should have resulted in high false-positive rates for experiments
using enclosures constructed from twenty-four hour segments.

False-positive rates for enclosures built using measurements
from individual days varied from 3.1% to 99.7% for the convex
hull and from 2.4% to 7.3% for hyperrectangle. The false-positive
rates for the hyperrectangle were lower than the results for the con-
vex hull. These results are due in part to the variance in the number
of requests processed. On day 7 (Saturday) 15072 requests were
processed, as opposed to day 3 (Tuesday) when there were 50638
requests. It is not surprising that the geometric enclosures built
from the segment of measurements that contain the fewest requests
produced the highest false positive rate when used to classify data
points from a full spectrum of system behavior. However, the en-
closures built from the segment of measurements that contain the
most requests do not have the lowest false-positive rate. We con-
cluded from these results that a single day of measurements should
not be relied on to construct an enclosure that represents normal
system operation.

Table 2 reports the false-positive results for multiple consecu-
tive day training sets. The first column shows the number of days
worth of data used to construct the geometric enclosures. For all
numbers of daysn, all sets ofn consecutive days were used. For
example, for two-day data sets we built enclosures from Monday
and Tuesday, Tuesday and Wednesday, Wednesday and Thursday
and so on. The results shown in Table 2 reflect the worst per-
formance for any set of the corresponding number of days. For
example 31.71% was the highest false-positive rate for any set of
two days. We include the worst results in this table to illustrate
the worst performance to be expected from randomly choosingn

consecutive days as a training set. The false-trigger-rate column
shows the percentage of time when the capacitor charge is over
the threshold and would trigger a fault warning. The false-trigger-
periods column shows the number of periods when the capacitor is
over the threshold. A trigger period is a segment of time durning
which the charge of the capacitor does not drop below the thresh-
old for more than fifteen minutes. False triggers are caused by
server behavior that the Aniketos fault-detection technique does
not recognize and a false-trigger period represents a single stretch

of time when Aniketos does not recognize the server behavior. A
false-trigger period can be thought of as a single unrecognized
event. The false-trigger period columns shows the number of un-
recognized events and the false-trigger rate shows the percentage
of time that these events covered. For example, for two day train-
ing data sets there were fifteen separate periods when the capaci-
tor stayed over the threshold and these periods covered 28.5% of
the experiment. These periods were separated by at least fifteen
minutes of the capacitor staying below the threshold. For the one-
day training data sets, the worst performing set had a single false-
trigger period, but this period lasted for 99.62% of the experiment.

We expected seven days to be sufficient because we consider
seven days to be a natural cycle of this website’s usage patterns.
Therefore we expected the false-positive rate to decline as more
days were used for the construction of enclosures. The hyperrect-
angle approach yielded significantly better results than the convex-
hull approach in the experiments that use training data sets of one
to three days. The two enclosures had similar performance in ex-
periments that used four to seven day training data sets. However,
false-positive rates are only one part of evaluating a fault detection
technique. Enclosures that produce lower false-positive rate, may
not produce the best detection of true faults.

Another point that needs to be discussed is the variation in
the false-positive rate between the hyperrectangle and convex-hull
methods. The hyperrectangle method displayed less variation in
the false-positive rate than the convex-hull method. This is be-
cause extreme points, those boundary points that define the enclo-
sure, have a greater effect on the volume of the hyperrectangle than
the volume of the convex hull. Figure 5 provides an example of
this phenomenon. Notice how by introducing a single new point,
the rectangle’s area is effected significantly more than that of the
convex hull.

6.2 Fault Detection Experiments
The results of the fault-detection experiments are listed in Ta-

ble 3. All reported results are for enclosures constructed from
a full week of measurements. Although the distance-based ap-
proaches provided faster detection of some faults, they failed to
detect other faults that were detected by the geometric approaches.
The difference in detection time is likely the result of the capacitor
function applied to the geometric approaches.

We expected that the detection of some faults would depend on
the values of a single metric while other faults would be detected
because of dependancies between two or more metrics. Therefore,
the convex-hull method should detect some faults as fast as the
hyperrectangle method and others significantly faster.

The results documented in Table 3 demonstrate the promise
of using the convex-hull method for fault detection. Of the eight
fault experiments, there are three (Slow-Infinite-Recursion, Log-
Explosion, and DOS-Attack) where the convex-hull method does
not significantly outperform the hyperrectangle method. In all
three cases a single metric was enough to determine the presence
of a fault. Those metrics were Stack Depth Average in the case of
the Slow Infinite Recursion fault, CPU Time Average in the case of
the Log Explosion fault, and TCP Accept Sockets Alive or Thread
Count in the case of the DOS Attack fault. In the remainder of
the fault experiments, the convex-hull method outperformed the
hyperrectangle method significantly.

The Memory-Leak and Infinite-Loop faults were detected by
both the convex-hull and hyperrectangle techniques. However, the
convex-hull technique detected the faults significantly faster than



the hyperrectangle technique. This implies that even though there
is a single metric that can be used as a predictor of the fault, a
combination of metrics is more efficient for the detection of that
fault.

To detect Memory-Leak and Infinite-Loop faults, the hyper-
rectangle depended on the Total-Memory and CPU-Time-Average
metrics. This result was expected because each of these two faults
strain a single resource and can, therefore, be detected by observ-
ing that resource. An interesting result in these experiments was
that the convex-hull method detected the faults significantly faster
by exploiting the relationship between metrics.

In addition to outperforming the hyperrectangle method in some
cases, the convex-hull method was also able to detect three faults
that the hyperrectangle method could not detect. These were the
Slow-Infinite-Loop, Infinite-Recursion, and Spambot fault. It is
clear that the relationship between metrics needs to be considered
when detecting these faults. In the case of the Slow-Infinite-Loop
fault, the Total-Memory metric and any one of the following met-
rics needed to be considered.

• Loaded Class Count

• TCP Accept Sockets Alive

• Stack Depth Average

• Thread Count

In the case of the Infinite-Recursion fault, the Total-Memory met-
ric and any of the following metrics needed to be considered.

• Loaded Class Count

• TCP Accept Sockets Alive

• Stack Depth Average

In the case of the Spambot fault the relationship between five met-
rics had to be considered. Those five metrics were Loaded Class
Count, Total Memory, TCP Bytes Read and Written, CPU Time
Average, and either TCP Accept Sockets Alive or Thread Count.

Because the slow infinite loop can be detected using only two
metrics, that detection process can be illustrated in a two-dimen-
sional figure. Figure 6 demonstrates why the convex-hull method
detected this fault while the hyperrectangle method did not. The
fault is triggered by a URL request that causes NanoHTTPD to
spawn a new thread. However, this thread does not handle the re-
quest and instead goes into a slow infinite loop. The convex-hull
method has observed that when a new thread is created, mem-
ory is allocated to handle the request. Therefore, when a new
thread is created and no new memory allocation is detected, the
convex-hull method detects a fault. In contrast, the hyperrectan-
gle method treats each metric independently and has previously
detected both a state in which a new thread is created and a state
in which memory allocation is minimal. Therefore, it incorrectly
judges the faulty behavior as normal.

The Infinite-Recursion fault is similar in many respects to the
Slow-Infinite-Loop fault. When the Infinite-Recursion fault is trig-
gered, it quickly crashes the thread created to handle the request.
This places NanoHTTPD in a state similar to the one observed
during the Slow Infinite Loop fault, with one key exception. Once
the thread crashes it is no longer alive and is therefore no longer
counted by JSkopos. However, all other indicators, such as a live

TCP accept socket, are present. Therefore, the convex-hull method
is still able to detect the Infinite-Recursion fault.

Since the Spambot fault requires five metrics to be detected, it
is impossible to visualize. However, it is interesting to note that
that TCP Accept Sockets Alive and Thread Count can be inter-
changed. This is because they are both indicators that a new re-
quest is being processed.

The set of metrics used in the case study was chosen based on
our opinion that these metrics would be sufficiently capture Na-
noHTTPD’s execution. It is worth noting that each metric was
necessary in detecting at least one of the faults presented in the
case study. Overall, the case study demonstrates the advantages
of the convex-hull method over the hyperrectangle method and the
feasibility of a computational geometry approach to fault detec-
tion.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a novel approach to detection

of runtime faults that uses methods based on computational geom-
etry. We have implemented this approach in the Aniketos fault-
detection system described in Section 4. We performed a case
study, described in Section 5, and we have reported results, in Sec-
tion 6, that demonstrate the promise of our approach.

We have shown that the Aniketos fault-detection technique is
robust. Aniketos can use either a single metric or a variety of met-
rics which can be either dependent or independent. Aniketos can
detect faults triggered by bugs (i.e., memory leak) or malicious at-
tacks (i.e., denial of service attack). The Aniketos fault-detection
technique is mathematically elegant. In concept it is easy to un-
derstand and it covers a range of fault-detection types in a single
technique.

We conclude from our case study that the methods that as-
sume independence among metrics will perform poorly for com-
mon faults. In addition, we conclude that the convex-hull method
employed by Aniketos can capture relationships between metrics
that can be used to detect some faults faster that methods that as-
sume independence between metrics, and detect some faults that
they cannot detect at all.

We plan to conduct experiments that compare our detection
method to additional commonly used methods based in statistical
machine learning. We also plan to experiment with including el-
ements of correlation methods in our approach. For example, we
would like to employ existing methods for detecting correlation
between metrics and then include those correlations as metrics in
our method. Currently we are limited to building convex hulls in
seven dimensions. We would like to find a way around this tech-
nical limitation and test our method in higher dimensions. Finally,
we will expand our case study to include different web servers and
other kinds of system and application software.
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