
6 2 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 1 0 7 4 0 - 7 4 5 9 / 0 1 / $ 1 0 . 0 0 © 2 0 0 1 I E E E

to help them study the existing architecture.
At AT&T, these diagrams used to be created
and updated manually, published annually,
and distributed throughout the business units.

The process of manually drawing system
interface diagrams is tedious and error-prone:
a simple diagram showing all the interconnec-
tions to a single system could take 30 minutes
or more to draw, and the diagram often be-
comes obsolete before it is published. More-
over, it is not easy, through the draw-and-
publish mechanism, to get a system interface
diagram in real time based on an ad hoc query
because the need for the diagram might not
have been anticipated. For example, a man-
ager in charge of reengineering billing opera-
tions across the company might want to gen-
erate diagrams that show the systems involved
in bill calculations for more than 200 prod-

ucts and service offerings. Since these queries
are unexpected and therefore the diagrams
not published, manually producing all these
diagrams could take a long time. This situa-
tion would likely delay the reengineering deci-
sion process.

We built a system called Enterprise Navi-
gator to let users make ad hoc queries about
an enterprise software architecture and then
automatically generate the corresponding
system interface diagram in real time on the
Web. Figure 1 shows a typical diagram EN
generated for a particular ad hoc query. Each
node represents a system, and each link rep-
resents an interface between the two con-
nected systems. With EN, users can

� study a system architecture’s evolution
over time,

feature
Visualizing and Analyzing
Software Infrastructures

Adam Buchsbaum, Yih-Farn Chen, Huale Huang, Eleftherios Koutsofios,
John Mocenigo, and Anne Rogers, AT&T Labs—Research

Michael Jankowsky, AT&T Business Services

Spiros Mancoridis, Drexel University

Large
corporations
typically run
complex
infrastructures
involving
hundreds or
thousands of
software systems.
As marketplaces
change, these
infrastructures
must be
redesigned. The
Enterprise
Navigator system
lets architects
visualize and
analyze the system
interconnections
of selected
products and
services.

C
ompanies frequently need to redesign their software infrastruc-
tures in response to marketplace changes, but they must do so
carefully so that the new architecture will not disrupt existing op-
erations or increase operating costs unnecessarily. To support

these goals, system architects have long recognized the need to build a
repository of information about all of their company’s systems and their in-
terfaces. Using this information, architects create system interface diagrams

architecture

� find substructures embedded in com-
plex diagrams, and

� determine which systems dominate in-
formation flows.

EN runs as a collection of stand-alone tools
using a set of database visualization tools,
called Ciao,1 or as an integrated Web serv-
ice. This article focuses on the latter.

Our work builds on established research
in source code analysis, graph drawing, and
reverse engineering. Acacia2 and Chava3 are
examples of reverse engineering tools for an-
alyzing C, C++, and Java programs, respec-
tively. These systems store source code analy-
sis results in an entity–relationship database
so that users can extract software structure
information through ad hoc queries without
relying on customized parsers. Software engi-
neers often use visualization tools that em-
ploy automatic graph-drawing algorithms4,5

(see the “Graph Drawing” sidebar) to help
them comprehend the results of their analy-
ses. Many reverse engineering techniques, in-
cluding techniques for software clustering6

and dominator analysis,7 have underpinnings
based on optimization theory, statistics, and
graph theory.

To date, these techniques and tools have
been applied mainly to individual software
systems written in a variety of programming
languages. The work described here takes
the next step by showing how to model,
query, analyze, and visualize the entire soft-
ware infrastructure of a large enterprise
such as AT&T when the infrastructure in-
formation is available in a database.

Architecture
Figure 2 presents a high-level view of

EN’s architecture. You interact with EN by
means of a Java applet (as shown in Figure
3). The applet establishes a two-way socket
connection to a Java application running on
a server. The Java application communi-
cates with a database of software infra-
structure specifics via a JDBC (Java Data-
base Connectivity) connection (http://java.
sun.com/products/jdbc). The applet passes
your visualization requests to the server ap-
plication, which formulates an SQL query
to retrieve the necessary information from
the database. The server application then
constructs a system interface graph and
opens a connection to a graph layout pro-

S e p t e m b e r / O c t o b e r 2 0 0 1 I E E E S O F T W A R E 63

Customer
data

Reference data

Account info ZRC

QAXD

KPET

ERR

QAMWHV

JYVT

QIL

MQWZQ

CKSZ

EVH

HLJ

WIWMP

DQZ

LWBQH

QKF

XSI

EANL

VKBT

SIPEKN

IPL

XGBW

IHK

VEFCWN

DJU

PROBM

ETTE

UGNLM

XTRYR

NLAF

TDMI

COC

PLHP

WKN

XNTT

AMK

UHJ

CSW

HGZ

TEPP

VUS

NIFKS

WMVL

HYRUVK

Figure 1. A typical system interface diagram generated by
Enterprise Navigator. To protect proprietary information, we
have replaced real system names with randomly generated
ones and omitted certain interface names.

gram to position the graph’s elements auto-
matically. When the server application fin-
ishes the layout, it sends the graph using
Java object serialization (http://java.
sun.com/products/jdk/1.1/docs/guide/
serialization) to the applet, which creates a
visualization window and displays the re-
quested system interface diagram. You can
select nodes and edges to view their attrib-
utes, alter the graph display based on those
attributes, and return the graph to the server
for additional processing by graph cluster-
ing or graph dominator algorithms.

The glue holding EN together is the Java
application on the server machine. The EN
components linked by the server application
include

� System Profile Database, an infrastruc-
ture database;

� Grappa, a graph manipulation and dis-
play tool;

� Bunch, a graph clustering tool; and
� Dominator, a graph dominator tool.

System profile database
SPDB, the underlying database supplying

EN, contains key information about all sys-
tem entities and interfaces within the enter-
prise of interest. In AT&T’s SPDB, EN pri-
marily uses these three tables:

� The system table contains basic informa-
tion about each system in the entire busi-
ness enterprise. It also includes such en-
tities as work centers, network elements,
databases, and Web sites as well as ex-
ternal systems that participate in data
flows to or from other systems within
the enterprise. Information about a sys-
tem can include system type, name,
owner, and status; business unit owner;
phase-in and phase-out dates; and its
parent system.

� The interface table gives information
about flows between systems and other
entities described in the system table.
This information can include interface
type, owner, and status; the “from” and
“to” systems; the business unit owner;
and transmission media, frequency, and
mode.

� The mapping table links other entities
such as products and services or business
functions to systems in the system table.

In constructing a system interface dia-
gram, EN constructs a graph of the com-
ponents, setting the systems as nodes and
the interfaces as edges. It stores additional
pieces of information about those entities as
attributes to the graph elements.

Although this article focuses on the SPDB
used at AT&T, you can easily modify EN to
work with other databases as long as simi-
lar information on systems, interfaces, and
mappings is available.

6 4 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 1

Graph drawing addresses the problem of visualizing structural informa-
tion by constructing geometric representations of abstract graphs and net-
works. The automatic generation of graph drawings has important applica-
tions in key technologies such as database design, software engineering,
VLSI, network design, and visual interfaces in other domains. In any setting,
effective visualization should reveal interesting characteristics of data while
avoiding distractions and irrelevancy. Most objective properties for graph
layout algorithms correspond to a few simple visual principles:

• Favor recognition and readability of individual objects. Identifying ob-
jects should be easy—for example, by giving them legible text labels or
by choosing certain shapes, colors, or styles. This principle implies effi-
cient use of available layout area.

• Avoid aliases, including edge crossings, sharp bends, and the intersec-
tion of unrelated objects.

• Control eye movement to help users trace edges and paths in diagrams
and find sources and sinks. Short and straight or at least monotonic
edges are good.

• Reveal patterns by emphasizing symmetry, parallelism, and regularity.
Layouts having these characteristics are often easier to read and memo-
rize than ones lacking such organization.

Three families of graph layout algorithms have been particularly success-
ful: hierarchical layouts of trees and directed acyclic graphs, virtual physical
layouts of undirected graphs (for example, spring model layouts), and or-
thogonal grid layouts of planarized graphs.

Graphviz, a set of tools for Unix, Windows, and OSX, has components
for the first two families of layouts just mentioned. Source code and binary
executables for common platforms are available at www.research.att.com/
sw/tools/graphviz. One of the Graphviz tools, called Dot, was used to cre-
ate most of Enterprise Navigator’s layouts.

Grappa is a Java graph-drawing package that simplifies the inclusion of
graph display and manipulation capabilities in Java applications and ap-
plets. Grappa does not have graph layout capabilities built into it, but inte-
grates easily with tools such as Dot. Moreover, because Grappa stores graph
structure information, it simplifies the coding of custom layout algorithms in
Java. Grappa also enables questions about the graph structure to be an-
swered easily (for instance, finding nodes that are directly connected to a
given node). Grappa is available from the Graphviz Web site. It provided
the interactive graph displays we used in Enterprise Navigator.

Graph Drawing

Graph manipulation and display
A Java package called Grappa8 handles

graph manipulation and display in EN in
both the client applet and the server applica-
tion. It can also build and manipulate graphs
independent of display considerations. Al-
though Grappa does not contain layout algo-
rithms, it has methods for simplifying com-
munication with graph layout programs,
particularly the Dot layout program.5

Mouse interactions with the nodes and
edges that Grappa displays can trigger addi-
tional actions, including initiating a new
query specific to a selected element and
viewing or storing additional data about an
element. You can study architecture evolu-
tion over time because Grappa colors sys-
tems according to a reference date (see the
Status Reference Date field in Figure 3) and
each system’s status at that date. Grappa
also colors systems that have been phased
out of service and those yet to be introduced
differently from active systems. Visualizing
these changes helps architects determine the
effects of business reengineering on various
products and services.

Grappa is designed to be extensible—it
allows additional graph manipulation meth-
ods to be integrated. Without recoding any-
thing, we integrated the next two tools de-
scribed—Bunch and Dominator—into EN
through the server application, which acts
as a bridge between those applications and
the display applet.

Graph clustering
EN uses the Bunch tool (available at

http://serg.mcs.drexel.edu/bunch) to cluster
components in a system interface diagram.6

Clustering is particularly useful to system
architects who are trying to understand
large and complex software infrastructures
from their graph representations.

Bunch accepts a graph as input and out-
puts it partitioned into a set of nonoverlap-
ping clusters of nodes. Using Grappa, EN
can show this partitioned system interface
diagram as a graph with node clusters en-
closed in rectangles. The Java server applica-
tion communicates with Bunch through the
latter’s application programming interface.

Bunch attempts to partition the software
graph so that system entities (nodes) in the
same cluster are more closely related and
system entities in different clusters are rela-

tively independent of each other. Creating a
meaningful partition, however, is difficult
because the number of possible partitions is
large, even for a small graph. Also, small
differences between two partitions can yield
very different results. As an example, con-
sider Figure 4a, which presents a graph with
a small number of entities and relationships.
The two partitions of the graph shown in
Figures 4b and 4c are similar, with only two
nodes (M3 and M4) swapped. Despite this
seemingly small difference, the partition de-
fined in Figure 4c better captures the
graph’s high-level structure because it
groups the more interdependent nodes.

Bunch treats graph clustering as an opti-
mization problem, in which the goal is to
maximize an objective function that favors
creating clusters with a high degree of intra-

S e p t e m b e r / O c t o b e r 2 0 0 1 I E E E S O F T W A R E 65

Java client
display applet

Threaded Java
server application

Socket
connection

JDBC
connection

Graph manipulation
programs

Pipes

Software
infrastructure

database

Figure 2. The Enterprise Navigator architecture.

Figure 3. The Enterprise Navigator query interface.

edges, the edges between nodes of the same
cluster. The same function penalizes pairs of
clusters that exhibit a high degree of inter-
edges, the edges between nodes that belong
to different clusters. A large number
of interedges indicates poor partitioning,
which complicates software maintenance be-
cause changes to a software system might af-
fect other systems in the software infrastruc-
ture. A low degree of interedges, indicating
that the individual clusters are largely inde-
pendent, is a desirable system architecture
trait. Changes applied to such a system are
likely to be localized to its cluster, thereby re-
ducing the likelihood of introducing errors
into other systems.

Graph dominators
EN uses the Dominator tool to determine

a graph’s dominators. In a graph with a se-
lected root node R, node X dominates node
Y if every path from R to Y goes through X.
When EN generates a system interface dia-
gram, each interface link between systems
represents an information flow. For exam-
ple, in Figure 5a, the link from A to B means
that information flows from A to B. Figure
5b shows the dominator tree derived from

that infrastructure graph. A link in the dom-
inator tree between two nodes means that
any information flow from the root node
(selected from the original graph) to the tar-
get node must flow through the source of the
link. For example, if A is the source node
and there is a dominator link from B to C,
then there is no way to get from A to C with-
out going through B. In other words, if B
were to be removed, C would be cut off
from any information derived by A. On the
other hand, consider the links from D to E
and A to E in Figure 5a. The direct link from
A to E provides a way to get to E from A
without going through D; therefore, D is not
a dominator of E. In fact, A is the sole dom-
inator of E.

The root node of a dominator tree repre-
sents the system where the information flow
logically begins. In cases where a single root is
not available, the user can manually choose
multiple roots from the graph to act together
as the global information source.

Our tool uses the Dominators Algorithm
devised by Thomas Lengauer and Robert
Endre Tarjan.7 Adam Buchsbaum and his
colleagues9 provide a history of dominator
algorithms as well as theoretical improve-
ments to the Lengauer-Tarjan algorithm.
Here are two sample applications for domi-
nator trees in EN:

� Performing a sanity check on system
evolution. Removing a system discon-
nects all systems dominated by it (and
by extension systems dominated by
those, and so on) from the original in-
formation source. Therefore, systems
that are scheduled to retire should not
dominate any systems that are not retir-
ing. EN lets you check the situation vi-
sually by uniquely coloring systems to
be retired on a dominator diagram.

6 6 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 1

Cluster 1

Cluster 2

M1 M2

M3

M4 M5

M6

M1 M2

M3

M5 M6

M4

Cluster 1

Cluster 2

M1 M2

M3

M5

M6

M4

(a) (b) (c)

Figures 4. (a) A small
system interface
graph; (b) a partition
of that graph; (c) a
better partition.

B C

A D

E

B C

A D

E(a) (b)

Figure 5. (a) A system interface graph and (b) its dominator tree.

� Qualitatively assessing the dependency
complexity. Flat dominator trees—that is,
trees in which many systems are directly
connected to root nodes—can represent
highly interconnected systems, because
there are few systems whose removal
would disconnect the graph. Such high in-
terconnectivity can be good due to repli-
cated resources for system dependability,
or bad due to unnecessary or duplicated
information flows. On the other hand,
deep dominator trees—that is, trees in
which many systems are far from the root
nodes—can represent less connected sys-
tems because many systems critically de-
pend on many others for connectivity
from the root. Again, this may be good or
bad, depending on the application.

Case study
Figure 3 shows the query interface pre-

sented by the Java applet on the client side.
The interface lets you select systems from dif-
ferent business units, owners (managers),
products and services, business functions,
and so on before generating a system inter-
face diagram. The parameters you select in
some categories constrain what choices are
available in other categories. For example,
when you click the Browse button next to the
Business Unit category, the list of all business
units appears (see Figure 6a). If you choose
iHome and then click the Browse button next
to the Product/Service item in Figure 3, Fig-
ure 6b appears and shows all products and
services under the iHome business unit only.
(All business unit names, product names, and
system names have been replaced with imag-

inary names to protect proprietary informa-
tion.) If you select iPhone and browse the
systems under that service, the list of systems
appears (see Figure 6c). You can refine the
query further by setting the values for Busi-
ness Process or Business Function, and so on.

You can pick any system from the list to
generate a system interface diagram. Figure
7 shows a typical diagram for the fictitious
HLJ system. The picture clearly shows that

S e p t e m b e r / O c t o b e r 2 0 0 1 I E E E S O F T W A R E 67

Figure 6. Lists of (a) business units and (b) products and services under iHome; (c) systems under
iHome that are involved with the iPhone service.

Reference
data

Customer
data

Customer
data

appl iBusiness
VUS

appl iBusiness
COC

appl iBusiness
TDMI

appl iNet
CSW

appl iLabs
QAMWHV

appl iLabs
KPET

appl iNet
VKBT

appl iHome
IPL

appl iBusiness
TEPP

appl iNet
HYRUVK

appl iNet
HGZ

appl iLabs
NIFKS

appl iLabs
WMVL

Customer
data

Active system

Retired system

Insufficient
information
about system

Customer
data

Account
info

SpdbViewer/Enterprise Navigator Viewer

appl iLabs

HLJ

Figure 7. System interface diagram of HLJ (a fictitious system
name).

(a) (b) (c)

6 8 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 1

WMVL

CKSZ

XNII

NIFKS

VUS

XGBW

WTWMP

IEPP

UHJ

FVH

HGZ

LWBQH

CSW

AMK

IPL

VEPCWN

EANL

ZRC

ERR

QEF

IDMI

XGBW

COC

XNII

SIPEEN

QAXD

KPEI

QAMWHV

PLHP

WEN

DQZ

XSI

VEBI

WIWMP
MQWZQ

PROBM

UGNLM

VEFCWN

DJU

NLAF

QIL

EIIE

XIRYR

JYVI

LWBQH

EVH

LUU

CKSZ

IPL

PROBM

EIIE

NLAF

XIRYR

UGNLM

MQWZQ

QIL

COC

VEBI

SIPEKN

KPEI

ZRC

IYVI

IDMI

HLJ

HYRUVK
QKF

EANL

ERR

XSI

WEN

QAMWHV

DQZ

PLHP

QAXD

HGZ

IEPP

CSW

WMVL

25

HYRUVK

23

5

20

NIFKS

10

VUS

11

AMK

UHJ

IHK

IHK

HLJ

(a) (b)

Figure 8. Two diagrams generated from the system interface diagram shown in Figure 1: (a) the
clustering diagram and (b) the dominator diagram.

HLJ collects reference data and then distrib-
utes accounting and customer data (among
other things) to other systems.

In a system interface diagram, you can
color each node according to different sys-
tem attributes. In Figure 7, we use the status
shading scheme, in which a yellow node in-
dicates an active system and a gray node in-
dicates insufficient information about that
system. Using the reference date (1999-11-
23) shown in the query interface page (Fig-
ure 3), a blue node indicates that this system
is planned and will be introduced soon, and
a purple node indicates that this system has
retired. Because it is important to know
how a business reengineering plan affects
the system architecture, the architect can
use different reference dates to see how the
system interface diagram of a particular
product or service has evolved or will
change. Another shading scheme we used in
the past was Y2K shading, in which nodes
were colored according to whether they
were Y2K compliant. This scheme let us
quickly verify the Y2K readiness of a prod-
uct or service (assuming the Y2K compli-
ance data was available).

The control bar in the bottom of the win-
dow shown in Figure 7 provides several
other features. Hitting the “Convert to …”
button converts the current interface dia-
gram to various graphics and database for-
mats so that other tools can import it easily.
When you click on a system node, the de-
fault action is to generate another system in-
terface diagram centered on that node. If,
however, you check the Page Link check-
box, a Web browser is invoked to bring up
a Web page showing all the system details
(software, hardware, contacts, and so on)
extracted from SPDB.

Instead of focusing on a single system,
you can choose to generate a system inter-
face diagram for all systems involved in a
product or service (or any systems that sat-
isfy a particular query). Figure 1 shows a
typical system interface diagram of a partic-
ular service. If you would like to discover
clusters of systems embedded in a complex
structure, you can invoke the Bunch tool to
convert Figure 1 to a clustering diagram,
shown in Figure 8a. The diagram shows
two clusters with a similar architectural pat-
tern: each has a data hub that receives data
from several sources and distributes

processed data to many other destinations.
Identifying clusters from complex system in-
terface diagrams without the help of auto-
mated tools is not always easy.

If you want to discover the dominating
information flows starting from a particular
system, you can select the node and perform
a dominator analysis. Alternatively, EN can
perform topological sorting to rank the
nodes and add a virtual root to all the top-
level nodes before starting the dominator
analysis. Figure 8b shows a dominator tree
created with this method for the system in-
terface diagram of Figure 1. Clearly, any at-
tempt to remove the HLJ system will affect
all the other systems that it dominates, be-
cause any information flows to the product
or service represented by Figure 1 must go
through HLJ. Such information can help
system architects plan their reengineering
efforts.

S e p t e m b e r / O c t o b e r 2 0 0 1 I E E E S O F T W A R E 69

computer.org/join/grades.htm

GIVE YOUR CAREER A BOOST

UPGRADE YOUR MEMBERSHIP

Advancing in the IEEE Computer Society
can elevate your standing in the profession.

Application to Senior-grade membership
recognizes

✔ ten years or more of professional
expertise

Nomination to Fellow-grade membership
recognizes

✔ exemplary accomplishments in
computer engineering

REACH
HIGHER

E nterprise Navigator’s usefulness de-
pends heavily on the underlying data’s
timeliness. We are working on facili-

ties that would let architects update architec-
ture data directly from graphs, thus eliminat-
ing the delays associated with the old data
collection process. We also plan to add node
and link operators that will let users examine
in more detail the corresponding systems and
data transmitted on a link. With the addition
of operational-data-like system availability to
the database, we might be able to perform
end-to-end enterprise architecture simula-
tions. Finally, we welcome the opportunity
to apply the EN concept to other forms of
enterprise data. Most of the tools and li-
braries we use are already available on the
Web, and we plan to provide a reusable
package that would simplify their integra-
tion with other infrastructure databases.
For more information on EN and pointers
to the software components it uses, visit
www.research.att.com/~ciao/en.

References

1. Y. Chen et al., “Ciao: A Graphical Navigator for Soft-
ware and Document Repositories,” Proc. Int’l Conf.
Software Maintenance, IEEE CS Press, Los Alamitos,
Calif., 1995, pp. 66–75.

2. Y. Chen, E.R. Gansner, and E. Koutsofios, “A C++
Data Model Supporting Reachability Analysis and Dead
Code Detection,” IEEE Trans. Software Eng., vol. 24,
no. 9, Sept. 1998, pp. 682–693.

3 J. Korn, Y. Chen, and E. Koutsofios, “Chava: Reverse
Engineering and Tracking of Java Applets,” Proc. 6th
Working Conf. Reverse Eng., IEEE CS Press, Los
Alamitos, Calif., 1999, pp. 314–325.

4. G. Di Battista et al., Graph Drawing: Algorithms for
the Visualization of Graphs, Prentice Hall, Upper Sad-
dle River, N.J., 1999.

5. E.R. Gansner et al., “A Technique for Drawing Directed
Graphs,” IEEE Trans. Software Eng., vol. 19, no. 3,
Mar. 1993, pp. 214–230.

6. S. Mancoridis et al., “Bunch: A Clustering Tool for the
Recovery and Maintenance of Software System Struc-
tures,” IEEE Proc. Int’l Conf. Software Maintenance
(ICSM ’99), IEEE CS Press, Los Alamitos, Calif., 1999.

7. T. Lengauer and R.E. Tarjan, “A Fast Algorithm for
Finding Dominators in a Flowgraph,” ACM Trans. Pro-
gramming Languages and Systems, vol. 1, no. 1, 1979,
pp. 121–141.

8. N. Barghouti, J. Mocenigo, and W. Lee, “Grappa: A
Graph Package in Java,” Proc. 5th Int’l Symp. Graph
Drawing, Springer-Verlag, Berlin, 1997, pp. 336–343.

9. A.L. Buchsbaum et al., “A New, Simpler Linear-Time
Dominators Algorithm,” ACM Trans. Programming
Languages and Systems, vol. 20, no. 6, Nov. 1998, pp.
1265–1296.

For more information on this or any other computing topic, please visit our
Digital Library at http://computer/publications/dlib.

7 0 I E E E S O F T W A R E S e p t e m b e r / O c t o b e r 2 0 0 1

About the Authors

Adam Buchsbaum is a principal technical staff member in the Network Services Re-
search Lab at AT&T Labs. He specializes in the design and analysis of algorithms and data
structures. His research interests also include graph problems, massive data sets, and combina-
torics. He received his PhD in computer science from Princeton University. Contact him at Room
E203, Building 103, 180 Park Ave., PO Box 971, Florham Park, NJ 07932-0971; alb@
research.att.com; www.research.att.com/info/alb.

Huale Huang is a senior technical staff member in the Information Sciences Research
Lab at AT&T Labs, where he is working on mobile communications. He is interested in Web and
mobile computing. He received an MS in mathematics from the Chinese Academy of Sciences,
an MS in computer science from the New Jersey Institute of Technology, and a PhD in mathe-
matics from City University of New York. Contact him at Room C258, Building 103, 180 Park
Ave, PO Box 971, Florham Park, NJ 07932-0971; huale@research.att.com.

Yih-Farn Chen is a technology consultant in the Software Systems Research Depart-
ment, Network Services Research Center, at AT&T Labs. His research interests include mobile
computing, software engineering, and the Web. His recent work includes a mobile service plat-
form, Web-site tracking services, personal proxy servers, a reverse engineering portal, and
Enterprise Navigator. He was a vice chair of the WWW10 and WWW11 conferences. He re-
ceived his PhD in computer science from the University of California, Berkeley. Contact him at
Room E219, Building 103, 180 Park Ave, PO Box 971, Florham Park, NJ 07932-0971;
chen@research.att.com; www.research.att.com/info/chen.

Eleftherios Koutsofios is a technology consultant at AT&T. His research interests in-
clude interactive techniques, display and user interaction technologies, and information visuali-
zation. He has worked on graph layouts, programmable graphics editors, tools for visualizing
large data sets, and program animation. He received his PhD in computer science from Prince-
ton University. Contact him at Room E223, Building 103, 180 Park Ave, PO Box 971, Florham
Park, NJ 07932-0971; ek@research.att.com; www.research.att.com/info/ek.

John Mocenigo is a principal technical staff member with the Network Services Re-
search Lab at AT&T Labs. He enjoys problem solving and writing code for graph visualization
and database transaction logging. Currently he is working on a scripting language called Yoix
that runs under Java (www.research.att.com/sw/tools/yoix). He received his PhD in electrical
engineering–control theory from Brown University. Contact him at Room D225, Building 103,
180 Park Ave, PO Box 971, Florham Park, NJ 07932-0971; john@research.att.com; www.
research.att.com/info/john.

Michael Jankowsky is a senior technical staff member in the Enterprise IT Security
Group within AT&T Business Services. He specializes in database design and data management.
He received a BS in mathematics from Montclair State University. Contact him at AT&T Business
Services, Room E5-2A03, 200 Laurel Ave. South, Middletown, NJ 07748; jankowsky@ems.
att.com.

Anne Rogers is a technology consultant in the Network Services Research Lab at AT&T
Labs. She specializes in programming languages, compilers, and systems for processing large
volumes of data. She received a BS from Carnegie Mellon University and an MS and a PhD
from Cornell University. Contact her at Room E205, Building 103, 180 Park Ave, PO Box 971,
Florham Park, NJ 07932-0971; amr@research.att.com; www.research.att.com/info/amr.

Spiros Mancoridis is an associate professor in the Department of Mathematics and
Computer Science at Drexel University and founder and director of the Software Engineering
Research Group there. His research involves reverse engineering of large software systems,
program understanding, software testing, and software security. In 1998, he received a Career
Award for young investigators from the US National Science Foundation. He received his PhD
in computer science from the University of Toronto. Contact him at the Dept. of Math & CS,
Drexel University, Philadelphia, PA 19104; smancori@mcs.drexel.edu; www.mcs.drexel.edu/
~smancori.

