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Abstract

The application of spectral methods to the software clus-
tering problem has the advantage of producing results that
are within a known factor of the optimal solution. Heuris-
tic search methods, such as those supported by the Bunch
clustering tool, only guarantee local optimality which may
be far from the global optimum. In this paper, we apply
the spectral methods to the software clustering problem and
make comparisons to Bunch using the same clustering cri-
terion. We conducted a case study, involving 13 software
systems, to draw our comparisons. There is a dual benefit
to making these comparisons. Specifically, we gain insight
into (1) the quality of the spectral methods solutions; and
(2) the proximity of the results produced by Bunch to the
optimal solution.

1. Introduction and Motivation

Views of a software system’s structure are typically rep-
resented as directed graphs. When these graphs become
large, clustering algorithms can be used to partition them.
A variety of criteria have been used to partition software
graphs. A reasonable criterion is to partition a graph so that
clusters exhibit high cohesion but low coupling. We used
this criterion in our earlier work on the Bunch clustering
system [21] and use this same criterion in this work.

Software clustering tools create abstract structural views
of the resources (e.g., subsystems, modules, interfaces,
classes) and relations (e.g., procedure calls, inheritance re-
lationships) present in the source code. These views, which
can be considered a “road map” of a system’s structure, can
help software engineers cope with the complexity of soft-
ware development and maintenance.

The first step of a typical design extraction process (see
Figure 1) is to determine the resources and relations in
the source code and store the resultant information in a
database. Readily available source code analysis tools —
supporting a variety of programming languages — can be

used for this step [7, 8, 19]. After the resources and rela-
tions have been stored in a database, the database is queried
and a Module Dependency Graph (MDG) is created. For
now, consider the MDG to be a directed graph that repre-
sents the software modules (e.g., classes, files, packages)
as nodes, and the relations (e.g., function invocation, vari-
able usage, class inheritance) between modules as directed
edges. Once the MDG is created, clustering algorithms can
be used to partition the MDG. The clusters in the partitioned
MDG represent subsystems that contain one or more mod-
ules, relations, and possibly other subsystems. The final
result can be visualized and browsed using a graph visual-
ization tool [28].

Figures 2 and 3 show the MDG and partitioned MDG,
respectively, of a file system. The file system is a C++ pro-
gram that was written at the AT&T Research Labs. This
program, which consists of 50,830 lines of C++ code, im-
plements a file system service that allows users of a new
file system nos to access files from an old file system
oos (with different file node structures) mounted under the
users’ name space. In this example, the modules of the
MDG are C++ source files. Each edge in the MDG rep-
resents at least one relationship between program entities in
the two corresponding source modules.

In this paper we answer two fundamental questions per-
taining to the software clustering problem:

1. How can a software engineer determine — within a rea-
sonable amount of time and computing resources — if
the solution produced by a software clustering algo-
rithm is good or not?

2. Can an algorithm be created that guarantees a solu-
tion — within a reasonable amount of time and com-
puting resources — that is close to the ideal solution?

From a practical aspect, the answers to these questions
are important because they provide increased confidence to
software engineers who analyze systems. From a theoret-
ical aspect, these answers are important because they pro-
vide an approximation algorithm to a known NP-Hard prob-
lem, in addition to a method for comparing any solution,
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Figure 1. The design extraction process

even those produced by other algorithms that use the same
clustering criterion we do (i.e., coupling-cohesion tradeoff),
to the optimal solution.

The rest of the paper is structured as follows: Section 2
outlines related work, Section 3 outlines our spectral meth-
ods for clustering software graphs. Section 4 evaluates our
methods and compares them to an existing method, namely
Bunch. Finally, Section 5 outlines our conclusions and
plans for future work.

2. Related Work

The primary bodies of related work are from the areas of
software clustering and combinatorial optimization.

2.1. Software Clustering

Many of the clustering techniques published in the liter-
ature can be categorized by the way they create clusters. A
survey article published by Wiggerts [41] is a good start-
ing point to learn about software clustering. Hutchens and
Basili [15] developed an algorithm that clusters procedures
into modules by measuring the interaction between pairs of
procedures. Schwanke et al [32, 33] introduced the notion
of using design principles such as low coupling and high
cohesion to create clusters. Choi and Scacchi [9] describe
a clustering technique based on maximizing the cohesive-
ness of clusters by evaluating the exchange of resources be-
tween modules. Miller et al [27] implemented several soft-

ware clustering heuristics in the Rigi tool that (a) measure
the relative strength between interfaces, (b) identify om-
nipresent modules, and (c) use similarity of module names.
Clustering based on similar patterns in implementation in-
formation (e.g., module file names and directory structure)
has been investigated by Anquetil et al [2, 3] and Tzerpos
et al [39]. Concept analysis [20, 40, 1] has also been ex-
plored in the software clustering research. Our research on
the Bunch system is based on using heuristic search tech-
niques [22, 11, 21, 26] to determine clusters using the “low
coupling and high cohesion” criterion.

The Application of data mining approaches to the soft-
ware clustering problem was investigated by Sartipi et
al [31, 30]. The authors’ clustering approach involves us-
ing data mining techniques to annotate nodes in a software
graph with association strength values. These values are
used to partition the graph into clusters.

Now that a plethora of approaches to software clustering
exist, the validation of clustering results is starting to attract
the interest of the Reverse Engineering research commu-
nity. Many of the clustering techniques published in the
literature present case studies, where the results are eval-
uated by the authors or by the developers of the systems
being studied. This evaluation technique is very subjective.
Recently, researchers have begun developing infrastructure
to evaluate clustering techniques, in a semi-formal way, by
proposing similarity measurements [2, 3, 25]. These mea-
surements enable the results of clustering algorithms to be
compared to each other, and preferably to be compared to an



Q&\ngrp.ﬁ\;

Figure 2. MDG of a file system

agreed upon “benchmark” standard. Note that the “bench-
mark” standard needn’t be the optimal solution in a theoret-
ical sense. Rather, it is a solution that is perceived as being
“good enough”.

Existing clustering techniques neither provide a guaran-
tee on the quality of their solutions nor any indication of a
solution’s proximity to the optimum. Bunch, for example,
uses several methods to find solutions, such as hill-climbing
and genetic algorithms. Hill-climbing only guarantees lo-
cal optimality, but makes no guarantees of global optimal-
ity. Genetic algorithms are another type of search, like hill-
climbing, that does not guarantee the quality of its solution,
not even with respect to local extrema. Neither method in-
dicates how good a solution is with respect to the optimal
solution. Not being able to meet either of these criteria is
unsatisfactory.

2.2. Combinatorial Optimization

Most of the research on polynomial-time approximation
algorithms for graph clustering is concentrated on finding
the lower-bounds of graph bisection methods (see [29] for
a survey). There has been some work in the early 1970s
on the eigen-value characterization of the upper and lower
bounds of objective functions that are closely related to the

software clustering problem. The idea of using the eigen-
values to find the partitions of undirected graphs originated
in the work of Donath and Hoffman, as well as Fiedler [10,
12].

These eigen-value characterizations have been studied
to design efficient algorithms for a variety of problems in
the segmentation, grouping, verification and matching of
graphs arising in the domains of computer vision and data
mining [34, 37, 35, 36, 23, 24].

Recently, researchers have paid attention to approxima-
tion algorithms for graph partitioning [4, 38, 42, 14]. Most
of the these algorithms are based on solving simplified (re-
laxed) forms of the partitioning problem. The main benefit
underlying these techniques is that the relaxations produce
tractable problems. In related work [16] we showed how
to solve simplified variations of relaxed optimization prob-
lems, such as matrix scaling and balancing, in polynomial
time.

3. Spectral Methods for Software Clustering

We define a Module Dependency Graph M DG =
(M, R), where M is the set of named modules in the soft-
ware system, and R C M x M is a set of ordered pairs
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Figure 3. Clustered MDG of a File System

(u, v) which represent the source-level relationships that ex-
ist between modules » and v.

Given the MDG of a software system, we search for a
“good” partition of the MDG. We accomplish this by treat-
ing clustering as an optimization problem where the goal
is to maximize the value of an objective function. This
function characterizes the trade-off between coupling (i.e.,
connections between the components of two distinct clus-
ters) and cohesion (i.e., connections between the compo-
nents of the same cluster). We refer to our objective func-
tion as the Modularization Quality (MQ) of an MDG par-
tition. MQ adheres to our assumption that well-designed
software systems are organized into cohesive clusters that
are loosely interconnected. MQ is designed to reward the
creation of highly-cohesive clusters and penalize excessive
inter-cluster coupling.

0 i =0

CF; = ; .
’ MNT otherwise

k
MQ =) CF

i=1

(1)

The MQ for an MDG partitioned into & clusters is calcu-
lated by summing the Cluster Factor (CF) for each cluster
in the partitioned MDG. The Cluster Factor, C'F;, for cluster
i is defined as a normalized ratio between the total number
of internal edges and the total number of external edges that
originate in cluster ¢ and terminate in other clusters. We re-
fer to the internal edges of a cluster as intra-edges (u;) and
the edges between two distinct clusters as inter-edges (g;).

Let us assume that we are interested in partitioning the
nodes of an MDG into two sets M, and M, that maximizes
the M@ function. Let X be an n = |M|-dimensional in-
dicator vector, with z; = 1 if module ¢ belongs to M in
the optimal bisection, and —1 otherwise. Also, let deg(u)

denote the out-degree of module v in the MDG, and £ de-
note the Laplacian matrix of the MDG, i.e., £y, = d(u),
Lyy = —1ifu # v and (u,v) is a source-level relation
between modules » and v, and 0 otherwise. Using the fact

that CF; =1 — misw MQ can be reformulated as:

MQ = 2- <P«1s-il-51 + H;ﬁw)

> —Lijwiz

zi>0,:cj<0 +

D deg(i) @

z;>0

> —Lijmiz

z;<0,z;>0

> degl(i)

;<0

= 2-

Hence, we can reformulate the optimal bisection of an
MDG as finding an appropriate {—1, 1} assignment of indi-
cator variables z;, 1 < 4 < | M|, that minimizes the follow-
ing expression;

> —Lijziz

z;>0,z;<0

MQ* (X +
v > degl(i)
x; >0 3
> Lz ©
z,-<0,mj>0
Z deg(i)
x;<0

Let D denote an | M| x | M | diagonal matrix with D, ,, =
d(u), a denote the normalized degree of modules in set
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tor whose entries are all 1s. Then the optimization problem
in (3) can be reformulated as an integer-programming prob-
lem of the following quadratic form:

), and e denote an identity vec-

(e +X)iL(e+ X)
4aetDe

(e — X)iL(e+ X)
4(1 — a)etDe

MQ" = (4)

IfY = (e+X)—:2;(e—X), the optimal solution to the
MDG bisection in (4) can be obtained from the following
optimization problem:

MQ* = Minimize %
- . o , ()
Subject to: y; € {1,72:}, 1 <i < |[M]|

YitLe =0

Removing the constraints y; € {1,725}, 1 < i <
|M|, from the optimization problem in (5) results in the
well-known eigen-value problem known as Rayleigh’s quo-
tient [13]. It is known that the minimizer of any quadratic

form X £X is an eigen-value of the MDG’s adjacency ma-

trix A. Using the change of variable Z = Dz Y will reduce
the optimization problem in (5) to computing the eigen-
vector corresponding to second smallest eigen-value of ma-
tix D= LD 7.

In the ideal case, the entries of the solution to the opti-
mization problem in (5) assume one of two discrete values,
and the values of the entries can be used to determine par-
titions M, and M. Unfortunately, the entries of an eigen-
vector can assume any real value since we removed the con-
straints y; € {1, {25}, 1 <4 < [M]from our optimization
problem.

In the absence of a binary solution to (5) we can sort
the entries of eigen-vector Y and find an appropriate split-
ting point that will generate a partition { M7, M, } that max-
imizes M @ in (2). After partitioning the MDG into clusters
M, and M, we can run the bisection procedure recursively,
in a top-down fashion, on the sub-MDGs induced by sets
M, and M,. Each branch of this recursion terminates when
a further partitioning of its clusters does not improve the
value of M Q.

3.1 RecursiveBisection Algorithm

Our recursive bisection clustering algorithm can be sum-
marized as follows:

1. Given an MDG on software modules M, construct the
diagonal matrix of degrees D to create the Laplacian
matrix L.

2. Define the eigen-equation £LX = ADX for the |M|-
dimensional vector X. Then, compute all of the roots
of this system (the eigen-values and eigen-vectors) us-
ing standard techniques [13].

3. The eigen-vector corresponding to the smallest non-
zero eigen-value will be used as the characteristic vec-
tor for the bisection. Use the entries of this vector to
split the modules of the MDG so that the break-point
maximizes the new value of M Q.

4. If the bisection improves the quantity of M @, then bi-
sect each sub-MDG obtained in the previous step, re-
cursively. Otherwise, stop the clustering algorithm.

In order to improve the quality of the recursive bisection
algorithm, we added two post-processing steps. A module «
in cluster C is an isolated element, if all the incoming or out-
going edges adjacent to « are from modules outside of C. In
the clean-up step, we first remove all isolated modules from
every cluster generated by the recursive bisection. Then,
we re-execute the algorithm on the induced MDG defined
on these modules. Finally, if after the clean-up step there
are still isolated modules, we try to locate more suitable al-
ternative clusters (i.e., that result in a higher M @ value) to
house these modules.

3.2 Solution Quality Guarantee of the Recursive
Bisection Algorithm

There is a rich body of work in the Computer Science
Theory community on the evaluation of clustering algo-
rithms. Most of the recent work in this area has focused on
measuring the notions of conductance volume and normal-
ized inter-cluster volume [5, 6, 18, 17]. Conductance vol-
ume for a set is defined as the ratio of the number of edges
inside the set over the total number of edges adjacent to the
vertices in the set. Similarly, the normalized inter-cluster
volume is defined as the ratio of edges leaving the set over
the total number of edges adjacent to the vertices in the set.
In fact, the conductance and normalized inter-cluster vol-
umes are the two main terms of our M () function.

Formally, a clustering {C1,...,C;} of M is called an
(a, €)-clustering if the conductance volume of each clus-
ter is at least «, and the normalized inter-cluster volume is
at most an e-fraction of the total number of edges. Assume
that (a*, €*) denotes the conductance and normalized inter-
cluster volumes for the optimal clustering on an MDG. Re-
cently, Kannan et al [17] showed that if the measure of qual-
ity for a cluster is the normalized volume, then any recursive
approximate-cut algorithm will generate a clustering with a
conductance volume of & = ﬁzwm and a normalized
inter-cluster volume of € = cxelog?® | M|, for absolute con-
stants ¢; and c2. They, subsequently, generalized their result



to show that if the measure of quality for a cluster S is any
function of the following form:

> Auw

u€eS,vgS

(5) = Vol (S), Vol (W \ 9))

(6)

(where the Vol of a set is the number of edges of the set and
A, is the adjacency structure between « and v) then the
optimization algorithm that is based on this function will
have the same performance guarantee, albeit with different
constants ¢; and co. It is easy to see that the formulation
of M@ in (4) satisfies a similar condition on every cluster
and, thus, will have a similar performance guarantee. In
short, the recursive bisection algorithm will generate clus-
ters that have a conductance volume within a factor m
of the optimal and an inter-cluster volume within a factor of
¢ log® n of the optimal.

4. Evaluation

For small graphs, our algorithm gives excellent perfor-
mance. For larger graphs, however, the performance is not
as good. Computing eigen-values takes cubic time, and bi-
secting a graph recursively can, in the worst case, takes n—1
iterations, giving a worst-case complexity of ©(n?). The
results, however, are deterministic, unlike other clustering
techniques that use hill-climbing and genetic algorithms.

We have compared the results of our algorithm with the
results produced by Bunch on the software systems de-
scribed in Table 1. The MDGs of these systems are graphs
where the nodes are classes (for Java and C++) and files
(for C) and the edges are function or method calls and vari-
ables usage. Table 2 gives a comparison of the result and
time ratios. For small systems (< 100 modules), the fitness
function values for recursive bisection are within 0.85 of
Bunch’s fitness value results. For large systems, the results
of recursive bisection are never below 0.639 of Bunch’s re-
sults. This is understandable, as it is difficult for our al-
gorithm to compensate for early mistakes that are not cor-
rected by its clean-up phases. Bunch, however, can detect
and correct such problems when it looks at the neighbors
of it’s current state and sees improvement in the correction.
This problem is more prominent in the larger graphs be-
cause there is more opportunity for error.

5. Conclusions & Future Work

There are many good software clustering algorithms.
Software clustering, however, is known to be NP-hard, and,

System Name Description

Compiler Turing Language Compiler
LSLayout Layout Algorithm

Boxer Graph Drawing Tool
Mini-Tunis Small Operating System
ISpell Unix Spell Checker
Modularizer MDG Graph Generator
RCS Revision Control System
Bison Compiler compiler

CIA C Source Code Analyzer
Grappa Graph Drawing Applet
Swing Java GUI Library

Linux Kernel Kernel for the Linux OS
Proprietary Compiler  Industrial Strength Compiler

Table 1. The systems of our case study

System Name Nodes Time-Ratio MQ-Ratio
Compiler 13 0.859 1.033
LSLayout 17 0.895 0.962
Boxer 18 0.953 0.986
Mini-Tunis 20 0.929 0.980
ISpell 24 0.931 0.902
Modularizer 26 0.939 0.966
RCS 29 0.854 0.879
Bison 37 1.037 0.918
CIA 38 1.024 0.944
Grappa 86 1.796 0.881
Swing 413 13.559 0.755
Linux Kernel 916 35.268 0.639
Proprietary

Compiler 939 21.893 0.691

Table 2. Recursive Bisection versus Bunch
(the ratios are Bisection / Bunch)

thus, for clustering algorithms to be useful, they must pro-
vide sub-optimal answers or face an exponential running
time.

We have shown that our spectral clustering algorithm
gives a bounded approximation of the optimal clustering.
Our algorithm, however, is generally worse than Bunch in
quality of solution and running time, and only gets worse
as the size of input increases. This observation implies that
Bunch yields answers within a bounded approximation of
the optimal solution, and does so efficiently.

In the future we hope to generalize our technique to pro-
duce solutions that may be better than those produced by
Bunch. Specifically, for a k-section, 2 < k£ < n, instead
of assigning a variable z;, 1 < ¢ < n, we can assign a k-
dimensional vector X(9 to each module M; in the MDG.



The vector’s entries can be either 0s or 1s. Intuitively, in
an optimal solution, all modules with similar vectors will
belong to the same cluster. More specifically, let X denote
an n x k matrix for which the non-zero entries of column
Jj represent the nodes contained in cluster S;, 1 < j < k,
and its 4-th row corresponds to vector X;), 1 <4 < n. In
addition, let A represent the adjacency matrix of the MDG,
and D denote the n x n diagonal matrix with D; ; = d;.
Then, the optimization problem in (2) can be generalized to
an arbitrary value of k as follows:

XEAX;
imi - ()2 ()
Maximize MQ = Z ﬁ
1<i<k
Subject to eTXTXe=n
Xep =ce,

X;;€{0,1},1<i<n,1<j<n

where ey, is a vector with entry &k equal 1, and 0 everywhere
else, I, is the identity matrix of order n.

Note that the constraints of this optimization problem
guarantee exactly one non-zero entry in each row of ma-
trix X. Hence, each module can belong to exactly one of
the & clusters {5, ..., Sk}

A second approach to generalizing the bisection algo-
rithm is to use the higher order eigen-vectors given by the
solution of (5). An argument can be made to show that the
first eigen-vectors corresponding to first k eigen-vectors of
the Laplacian matrix are the non-integral solutions that sub-
partition the first & — 1 parts in an optimal way. To make
this approach practical we must bound the rounding error
for each eigen-vector computation to control the quality of
the solution. The higher-order eigen-vectors must satisfy all
of the conditions of the optimization problem in (5).
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