
Malware Anomaly Detection on Virtual Assistants
Ni An∗, Alexander Duff†, Mahshid Noorani†, Steven Weber∗, Spiros Mancoridis†
∗Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA

†Department of Computer Science, Drexel University, Philadelphia, PA

Abstract—This work explores the application of anomaly
detection techniques, specifically one-class support vec-
tor machine (SVM) and online change-point detection,
to construct a model that can distinguish, in real-time,
between the normal operation of an Amazon Alexa Vir-
tual Assistant IoT device from anomalous operation due
to malware infections. Despite the current absence of
widespread malware for IoT devices, the anticipated rapid
growth in deployment and use of IoT devices will likely
attract many different malware attacks in the near future.
Because of their highly specialized and, hence, predictable
expected behavior, malware detection on IoT devices is not
difficult given large training sets, long testing vectors, and
extensive computational power. The challenge we address
in this paper is to ascertain how quickly malware may
be detected, i.e., the distribution on the number of system
calls before a suitably high confidence decision may be
made.

I. INTRODUCTION

The Internet of Things (IoT) refers to the grow-
ing network of “smart objects,” i.e., computer systems
embedded into everyday things to give them sensing
and actuating capabilities in order to perform specific
functions and share data. The increased convenience
and efficiency provided by IoT devices have made them
commonplace in home environments. Some of the most
popular home IoT devices include smart personal assis-
tants (e.g., Amazon Alexa) and smart thermostats (e.g.,
Nest). The rapid and widespread adoption of IoT devices
by the public has led to the rise of new security concerns,
as several of these newly computerized devices are now,
and many more will likely be in the near future, targets
for malware.

Recently, malicious actors have used botnets of
malware-infected IoT devices, such as Internet-
connected appliances and home routers, to great
effect [1]. These devices are attractive targets for
malware due to their lack of cryptographic encryption
and weak default authentication. Among attacks that
have exploited IoT devices is a botnet malware family
named Mirai [2]. The botnets in these attacks primarily
consisted of home devices such as home routers,
webcams, and printers [3]–[5].

Amazon Alexa Echo is an example of a popular
IoT device. This intelligent virtual assistant processes
natural language to assist people with tasks around their
house. Alexa, similar to most IoT devices, is designed
to accomplish simple and specialized tasks, and as such
we claim that this narrow spectrum of responsibilities,
which is common to IoT devices in general, yields a
higher chance of success using anomaly-based detection
methods to identify deviations in measured statistics
against a normal model of operation of Alexa.

Behavioral malware-detection techniques to protect
general-purpose computing platforms typically require
a large corpus of pre-existing behavioral malware sig-
natures for training purposes. However, the variety and
youth of IoT devices leave us with a corpus of malware
that is insufficient to employ classic machine learning
algorithms. This makes anomaly detection methods for
IoT device security more attractive, especially in the
short term, until there are enough behavioral signatures
for malware to train more sophisticated machine learning
detection models for these devices.

In this paper, we exercise the capabilities of Amazon
Alexa and use OS system call data along with one-
class Support Vector Machines (SVM) [6] and sequential
analysis technique to construct a real-time anomaly de-
tector for Alexa. This anomaly detector is trained using
only benign (normal) usage scenarios. The detector is
subsequently subjected to both regular usage scenarios
and malware infections in order to demonstrate its ef-
fectiveness to distinguish normal Alexa operation from
anomalous, perhaps malicious, operation in real time.

While we demonstrate the effectiveness of our tech-
nique on Amazon Alexa, we anticipate that small vari-
ations of our technique can be used to create anomaly
detectors for more IoT devices, because these devices
are typically highly specialized and, hence, exhibit a pre-
dictable normal behavior. This is in contrast to creating
an anomaly detector for a general purpose computer.

II. PREVIOUS WORK

There has been prior work on techniques to detect
failing software servers in real-time due to software
faults [7], such as memory leaks, infinite loops, and



logic errors. This work was later generalized to develop
techniques that detect failing servers due to malware
infections [8]–[14]. These malware detection techniques
were later complemented by malware classification tech-
niques that could classify the detected malware attacking
servers into corresponding malware types (e.g., Zbot) and
families (e.g, Trojan botnet) [15], [16]. The preliminary
state-of-the-art on malware detection and classification
has been evaluated using thousands of malware samples
infecting server platforms that were executing a diverse
set of realistic workload scenarios [16]. Both classes
of techniques, i.e., malware detection and classification,
relied on OS kernel-level system call traces as inputs to
a variety of machine learning algorithms.

In the prior art data that was tainted by malware exe-
cutions was used as part of the model training process.
In contrast, this paper focuses on anomaly-based mal-
ware detection because of the limitations of traditional
signature-based detectors (e.g., ineffective on zero-day
attacks) and the fact that current IoT device do not yet
have enough malware samples that can be used to build
a model. Therefore, our focus is on developing detection
techniques that do not require a priori information about
specific threats, but rather are designed to detect unusual
behavior from the IoT device.

We will describe the creation of a behavioral anomaly
detection system designed to detect the execution of
malware on an Amazon Alexa IoT device, including new
IoT malware variants and families such as Mirai [2]. The
system has been designed to be used on-line on the ac-
tual IoT device, using behavioral features and detection
algorithms to provide rapid malware detection, but that
also take into consideration the limited processing and
memory capability of IoT devices.

III. ANOMALY DETECTION MODEL

To the best of our knowledge, currently, there are
no malware samples, other than proof-of-concept ones,
that target voice-controlled IoT devices that use Amazon
Alexa. The lack of malicious training samples impedes
researchers carrying out supervised malware detection
techniques. Under the assumption that not enough mal-
ware samples are available, but will be eventually,
anomaly detection techniques are of great interest for
protecting IoT devices in the short term. Additionally, the
rapid variation and development of malware in general,
namely as polymorphic and metamorphic malware [17],
highlights a unique advantage of anomaly detection over
supervised approaches.

This work employs one-class Support Vector Ma-
chines (one-SVM) for anomaly detection along with
the Cumulative Sum (CUSUM) [18] or the Shiryaev-
Roberts (SR) procedure [19] for sequential analysis. This
section begins by describing our data extraction and
preprocessing methods in §III-A, and then proceeds with
an overview of the anomaly detector.

A. Feature generation and preprocessing

Behavioral anomaly detection uses sequences of sys-
tem calls and extracts features from them for the anomaly
detector. Specifically, our detector relies on the traces of
Linux OS kernel-level system calls that are generated by
the processes running on the Amazon Alexa device being
monitored. These system calls describe what OS func-
tions are used by each process executing on a computing
platform. When a malware process starts executing, its
system call traces will likely not match any of the benign
traces that are currently executing or have executed in
the past.

System calls can be viewed as the language of ma-
chines, and feature extraction methods in natural lan-
guage processing can be used to pre-process the system
call traces. First, we take a sequence of systems calls
collected in an observation window of length L as
a data sample. Then, we employ the bag-of-n-grams
model [20], [21] to produce the feature vector x ∈ Rp,
which is a vector of the number of the system call
sequences that occurred in a small sliding window of
length L data samples. Term frequency-inverse document
frequency (TF-IDF) transformation [20], [21] is then
used to normalize the feature vectors before providing
them as input to the one-class SVM.

B. One-class SVM-based anomaly detection algorithm

The one-class SVM finds a hyperplane that separates
the training data from the origin with a margin that
is as large as possible. The one-class SVM’s objective
function minimizes the normalized weights vector w
of the hyperplane (which is equivalent to maximizing
the margin), and the objective function is also penalized
by points that lie on the wrong side of the hyperplane
(i.e., the side wherein the origin lies). The test statistic
of the one-class SVM is the distance to the separating
hyperplane: y = wᵀφ(x)− ρ [22].

C. Run-time detection

Once the trained models introduced in §III-B are
created, the detection process is performed sequentially
on a system call sequence using a sliding window of



size L, with a stride length S. During the testing period,
i.e., when the initial sliding window L starting with the
first system call in the sequence is filled up, we use
the techniques described previously in §III-A to extract
and normalize the n-gram feature vector x1. The i-th
feature vector xi is extracted from the sliding window
starting at the 1 + S(i− 1)-th system call. The delay D
of the sequential detection can be defined as the number
of observed system calls before making a successful
detection.

Previous work on behavioral malware detection [9]
was performed at the uni-feature-level, meaning that
they treated observations of a single feature as a time
series, and combined the sequential detection results
of each uni-feature time series using majority voting.
For our problem, the time sequence of feature vector
[x1, ...,xT ]

ᵀ ∈ RT×p is extremely high-dimensional and
sparse, especially for system call sequences of n > 1.

For our work, it is better not to perform the sequen-
tial detection at the single feature-level, but rather to
use it on the sequence of the univariate test statistics
y ∈ RT = [y1, ..., yT ]

ᵀ obtained by carrying out
the anomaly detection algorithm introduced in §III-B
on the feature sequence [x1, ...,xT ]

ᵀ. For one-SVM,
the test statistic of xi is its distance to the separating
hyperplane yi ≡ wTφ(xi)−ρ. This paper considers two
sequential detection algorithms: i) the CUSUM test; ii)
the SR procedure [19]. The sequential algorithms detect
a potential change point t ∈ [1, T ] of a series y by
inspecting the likelihood ratio between the probability
distribution function (PDF) of y before the change
point and after the change point. Under the assumption
that the PDF of the benign sequence and malicious
sequence are known as fY (yi) and gŶ (yi) respectively.
The log-likelihood between yi being a random sample
of malicious distribution Ŷ and benign distribution Y is
ri ≡ ln gŶ (yi)

fY (yi)
. The CUSUM test detects the time:

tτW = min{i :Wi > τW }, (1)

with Wi ≡ max{0,Wi−1 + ri}, W0 = 0, and τW is a
threshold to balance the trade-off between the tolerable
false alarm rate and the detection rate of the sequential
test.

Similarly, define li ≡ gŶ (yi)
fY (yi)

, the SR procedure detects
a time:

tτC = min{i : Ci > τC}, (2)

with Ci≡(1+Ci−1)li, C0=0, and tunable threshold τC .

We simply assume that all test statistics follow a
Gaussian distribution, the PDF of benign samples is

fY (yi) =
1√

2πσY
e
− (yi−µY )2

2σ2
Y ,

and the PDF of malicious samples is:

gŶ (yi) =
1√

2πσŶ
e
−

(yi−µŶ )2

2σ2
Ŷ .

We further assume that the difference between the PDF
functions of the benign and malicious test statistics
mainly lies in the mean value µY , µŶ . It is reasonable to
estimate the mean µY and standard deviation σY of the
benign samples by the sample mean and sample standard
deviation of the benign training data. For one-class SVM,
the test statistics Ŷ of the malicious samples are typically
smaller than those of the benign samples and, thus, the
mean of and standard deviation of malicious samples are

µŶ = µY −mσY , σŶ = σY ,

respectively. Note that m > 0 is a tunable sensitivity
parameter for the sequential test.

IV. EXPERIMENTAL SETUP

The source code for the firmware/OS running on
Alexa-Enabled Devices (devices with built-in access to
Alexa services) is not open source. As such, it is not
possible to obtain the feature data used for malware
detection directly as one would on a traditional device
running Linux. However, it is possible to install the
Alexa Voice Service on a variety of other devices. For
this experiment, we used a Raspberry Pi 2 Model B
running Alexa Voice Service in place of an Amazon Echo
Dot, which is one of the most popular smart speakers.

A. Raspberry-Pi setup

The model of the device running the Alexa Voice
Service is a Raspberry Pi 2 Model B. The operating
system installed on the device is a Raspbian-Stretch as
provided by the Raspberry Pi foundation website. We
use this device as a surrogate for the Amazon Echo Dot
(Gen 2) for two reasons.

First, the Amazon Echo Dot runs Amazon’s “Fire
OS”. Because Fire OS is proprietary, we are unable
to do many of the things required to perform our data
collection on the device. However, the Raspberry Pi runs
the Raspbian-Stretch operating system, which is open
source and allows us to customize the device and access
the OS kernel. While the two operating systems are
different from one another, they are both Unix-based,
and as such, have a similar lower-level functionality.



Second, the Raspberry Pi 2 Model B’s central pro-
cessing unit is the Broadcom BCM2836 [23], while
the Amazon Echo Dot’s central processing unit is the
MediaTek MT8163V [24], both of which are quad-
core processors whose underlying architecture is the
ARM Cortex-A53 micro-architecture, implementing the
ARMv8-A 64-bit instruction set [23], [25].

B. Alexa installation

The Alexa-Enabled devices available from Amazon
(such as the Echo) are not suitable for collecting the data
we use as features for our detection model. As such, we
installed the Amazon Voice Service on a Raspberry Pi
2 Model B. To achieve feature parity with an official
Alexa-Enabled device, one must register as a developer
with Amazon, register the device upon which the Alexa
Voice Service will be installed, and download some li-
braries, programs, and security certificates from Amazon.
With the addition of a USB microphone and analog
speakers connected via the Raspberry Pi’s 3.5mm audio
output port, a user can query the device in the same way
as one would with a device such as an Amazon Echo
and receive the same results.

C. Exercising the Alexa capabilities

Currently, there is no interface available to the public
to facilitate automatic interaction with the Alexa Voice
Service for practicing built-in capabilities. The majority
of computation performed when making queries is han-
dled at a remote server rather than the Alexa-Enabled
device itself. Consequently, the system calls made on the
device itself when handling different queries are very
similar as the device mostly establishes a connection
with Amazon’s servers and offloads the query. Further-
more, in practical use, the device is not handling queries
at all, but rather listening for a wake word. During this
passive listening state, the Amazon Voice Service is
still running and awaiting input. This means that even
when the device is not actively handling a query, it still
continually makes system calls as part of the service.
As such, the pattern of behavior demonstrated while
the device is idle is still useful in building a realistic
model for anomaly detection. When gathering data for
our experiments, we exercised a broad set of Alexa built-
in capabilities from books, calendar, weather, music, and
standard built-in skills categories. We also gathered data
when Alexa was idle, both in a quiet environment as
well as in an environment with ambient noise.

V. EXPERIMENTAL RESULTS AND COMPARISONS

We start by describing the distribution of the system
call features in §V-A for each of the 1) malware-
free Alexa-Enabled devices that are not being queried;
2) malware-free Alexa-Enable devices that are being
queried; and 3) malware-infected Alexa-Enabled devices.
The results in §V-B show that Alexa has a behavioral
signature that can be used to distinguish an OS running
Alexa from one that is not. Finally, the experiments
described in §V-C reveal the relationship between de-
tection delay and detection accuracy, and demonstrate
that the anomaly detector can detect malware execution
accurately and efficiently. In this work, the detection
accuracy is evaluated by two metrics: the false alarm rate
(FAR) and the true positive rate (TPR), which represent
the fraction of benign samples that are falsely identified
as anomalies, and the fraction of malicious samples that
are correctly detected as anomalies, respectively.

A. Statistics of system calls

Table I shows the discrepancy between the system
calls observed when the Alexa-Pi device is idle and
placed in a quiet room, and those observed when: i)
the malware-free device is placed in a noisy room (i.e.,
ambient); ii) the malware-free device is being queried;
and iii) malware infects the device 1. Furthermore,
Fig. 1 shows the histograms of system calls observed
for these four scenarios. We can see from the table and
the histogram figure that the behavior of Alexa-enable
devices in a noisy room is distinct from its behavior in
a quite place. Fig. 1 also demonstrates the system call
distributional difference among the four scenarios.

Ambient pwrite64, fdatasync, getrandom, rt sigreturn, tgkill,
mremap

Query
pwrite64, getrandom, fdatasync, tgkill, rt sigreturn,
mremap, sched getparam, sched getscheduler,
fallocate, readlink

Infected

getrandom, fcntl, kcmp, timerfd create, tgkill,
waitid, setxattr, capget, rmdir, rt sigreturn,
sigaltstack, timer create, flock, msync, ppoll,
timer delete, timer settime

TABLE I: System calls that do not appear when the
Alexa-Pi device is idle but do appear in infected (ma-
licious) traces, benign traces in an environment with
ambient noise, and benign traces when the device is
being queried.

1The MD5 hashes of the malware sample that we use in this work are:
217f26322d3166c9ce9595710874ceff; 5b4a1226bfe9a557b73cf4138330b6c7;
and 218c8518121efec889b58c335adf5203. The malware samples were ob-
tained from VirusShare (https://virusshare.com/).



(a) Benign (Quiet) (b) Benign (Ambient)

(c) Benign (Query) (d) Infected
Fig. 1: System call distribution.

The system calls that occur in the infected traces that
are not in the benign traces of the idle device being
queried, or being placed in a noisy environment are
shown in Table II. Seventeen system calls are absent
from the idle traces but are present in the infected traces
as shown in the first row of Table I. Also, the number of
system calls in the infected traces that are not in the be-
nign traces is reduced to fourteen by exercising Alexa’s
features (e.g., querying Alexa) as shown in Table I.

Infected
fcntl, kcmp, timerfd create, waitid, setxattr,
capget, rmdir, sigaltstack, timer create, flock,
msync, ppoll, timer delete, timer settime

TABLE II: System calls in malicious traces and are not
in any of the benign traces (queried, ambient, or idle.)

To study the characteristics of voice controlled devices
under various scenarios, we focused on the most fre-
quently invoked system calls of the OS, their correspond-
ing occurrence frequency (i.e., PDF) and the cumulative
frequency (i.e., CDF) when: i) the device is idle in a
quiet environment (Table III); ii) the device is being
queried (Table IV); iii) the device is placed in a noisy
environment (Table V); and iv) the device is infected by
malware samples (Table VI).

If a malware sample is relatively passive, its pattern of

malicious activity may also hide in the system calls that
are not triggered frequently. Therefore, we also show the
list of least frequent system calls of the infected traces:
setuid32 socketpair
sigaltstack rename
timer_create flock
msync ppoll
timer_delete timer_settime
Each has an occurrence frequency of at most 4×10−8.
It is noteworthy that the benign ambient system-call

pattern presented in Table V is more similar to the
pattern in the benign query shown in Table IV than the
benign idle system-calls shown in Table III. The presence
of system-calls such as write in both the Query and
Ambient traces, but surprisingly not in the Idle traces
suggests that the device has very similar behavior in the
presence of ambient sound in the room prior and after
the activation with the wake word, “Alexa”.

B. Experimental results of detecting Alexa operation

We demonstrate that the behavioral signature of our
Alexa-enabled device is not only characterized by its
underlying hardware and OS, but is also characterized
by Alexa’s operation. Before showing the capability of



System call PDF CDF
ioctl 0.2803 0.2803

rt sigaction 0.0831 0.3634
close 0.0733 0.4367
read 0.0579 0.4946

getrusage 0.0457 0.5402
mmap2 0.0420 0.5822

poll 0.0399 0.6221
stat64 0.0396 0.6617

mprotect 0.0355 0.6972
recvmsg 0.0354 0.7327

TABLE III: System call distribution of benign traces
when the device is idle (top ten system calls).

System call PDF CDF
ioctl 0.1771 0.1771

gettid 0.1735 0.3505
recvmsg 0.0793 0.4299

futex 0.0617 0.4915
read 0.0579 0.5494

close 0.0469 0.5963
write 0.0417 0.6380

epoll wait 0.0412 0.6791
poll 0.0400 0.7191

open 0.0385 0.7576
TABLE IV: System call distribution of benign traces
when the device is queried (top ten system calls).

System call PDF CDF
gettid 0.2746 0.2746

ioctl 0.1066 0.3811
recvmsg 0.1055 0.4867

futex 0.0637 0.5504
epoll wait 0.0597 0.6101

read 0.0581 0.6682
poll 0.0441 0.7124

rt sigaction 0.0331 0.7455
write 0.0322 0.7777
close 0.0305 0.8082

TABLE V: System call distribution of benign traces
when the device is subjected to ambient noise (top ten
system calls).

System call PDF CDF
write 0.5548 0.5548
read 0.1769 0.7318
poll 0.1587 0.8905

recvmsg 0.0433 0.9338
ioctl 0.0391 0.9729

epoll pwait 0.0175 0.9905
getrusage 0.0039 0.9943

open 0.0006 0.9949
close 0.0006 0.9955

newselect 0.0004 0.9959
TABLE VI: System call distribution of infected traces
(top ten system calls).

an anomaly detector to learn the normal operation of
Alexa, the first step is to show that the Alexa client
operation is distinguishable from the other programs that

are executing on the OS of the device. To achieve this
goal, we designed a proof-of-concept experiment to test
whether or not an anomaly detector can successfully
distinguish a device with the Alexa client present from
the same device without the presence of Alexa.

A one-class SVM based anomaly detector was trained
by a trace, containing 2.02×107 system calls, generated
by a Raspberry-Pi device that was not running the Alexa
client. Then, we tested if the anomaly detector could
differentiate a sequence of system calls generated by
Alexa-enabled device from a sequence of system calls
generated by the device without Alexa. Fig. 2 shows
the resulting ROC curve with 2-gram features and an
observation window of 1000 system calls. We can see
that Alexa’s presence can be detected 100% of the time
without triggering any false alarms when the delay of
the detection is D = 100000 system calls.

0.00 0.02 0.04 0.06 0.08 0.10
FAR

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

TP
R

Delay=5000
Delay=10000
Delay=100000

Fig. 2: ROC curve of Alexa operation detection (L =
1000, 2-gram, m = 3).

C. Experimental results of on-line malware detection

This section investigates the influence of the obser-
vation window size L, the n-gram, and the detection
delay constraint Du = L + (i − 1)S, where i denotes
the index of the maximum allowed detection observation
window index and S denotes the stride size, on the
detection accuracy. In the experiment, we consider every
system call trace of length 2 × 104 as a single sample.
In order to decide whether a trace is abnormal or not,
the anomaly detector extracts a sequence of test statis-
tics y = [y1, ..., yT ] based on n-gram feature vectors
x1, ...,xT observed in a sliding window of L with stride
S = L/2 on the trace. It then performs the CUSUM test
or SR procedure over the sequence of test statistics. An
earlier detection of malware execution is desirable since
we want to minimize the damage caused by malware.
However, raising an alarm immediately after spotting any
suspicious activities may cause too many false alarms.
It is of great practical importance and interest to find an
operating point that can balance the trade-off between
the accuracy of detection and the detection delay.



0 5000 10000 15000 20000
Delay constraint

0.0

0.2

0.4

0.6

0.8

1.0
TP

R

L=100
L=500
L=1000
L=5000
L=10000

(a) 1-gram feature

0 5000 10000 15000 20000
Delay constraint

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

L=100
L=500
L=1000
L=5000
L=10000

(b) 2-gram feature

0 5000 10000 15000 20000
Delay constraint

0.0

0.2

0.4

0.6

0.8

1.0

TP
R L=100

L=500
L=1000
L=5000
L=10000

(c) 3-gram feature
Fig. 3: TPR obtained at FAR=0 vs. detection delay constraint Du (CUSUM test).

10 5 0 5 10 15
One-SVM test statistic value Y (Ŷ)

100

101

102

103

104

105

Fr
eq

ue
nc

y

Benign Y
Malicious Ŷ

(a) L = 100,
µY −µ

Ŷ
σY

= 2.92.

0.6 0.4 0.2 0.0 0.2
One-SVM test statistic value Y (Ŷ)

100

101

102

103

Fr
eq

ue
nc

y

Benign Y
Malicious Ŷ

(b) L=1 ∗ 104,
µY −µ

Ŷ
σY

=12.45.

Fig. 4: Histograms of the one-class SVM’s test statistics
when L = 100 or L = 10000 (using 2-gram features).

Our experiment performs 10-fold cross validation,
namely we partition the benign data to ten shares. In
each iteration, one share of the benign data is used for
testing and the rest nine shares are used to train the
anomaly detector. In the experiment, we want to know
the variation of the detection rate versus a tolerable delay
constraint Du: the anomaly detector keeps making new
observations if D < Du, and declares anomaly once the
change-point detection’s test statistic (Wi for CUSUM,
Ci for SR) is greater than a certain threshold; however as
soon as the delay D > Du, it stops taking new observa-
tions and makes a final decision. In the experiment, we
observe that the absolute difference between the sample
mean of benign samples’ one-SVM test statistics and
the sample mean of malicious samples’ one-SVM test
statistics tends to be larger for the case with a large L
than the case with a small L, as shown in Fig. 4. Hence,
we use m = 3 for L = 1×102, 5×102, 1×103, 5×103,
and m = 12 for L = 1× 104 in the experiment.

Fig. 3 presents the relationship between the detection
delay constraint Du and the achievable TPR (averaged
over 10-fold cross validation) for CUSUM test obtained
at zero FAR for the observation window size taking
values in 1 × 102, 5 × 102, 1 × 103, 5 × 103,1 × 104

with n-gram features (n ∈ {1, 2, 3}). Note we also
implement the SR procedure and obtain very similar
results as Fig. 3. From Fig. 3, we can see that, in general,
the detection accuracy improves when we have a larger
delay constraint. Using 1-grams, the detector achieves
a TPR of over 99.9% with L = 1000 when the delay
is greater and equal to 1 × 104. Comparing Fig. 3a
with Fig. 3b and Fig. 3c, we can see the detection
accuracy is significantly improved with 2-gram or 3-
gram features for L = 100, 500, 1000. With 2-gram, the
detector achieves 100% detection rate for all L with a
delay of 1× 104 system calls.

Fig. 5 shows the distribution of detection delay D of
CUSUM test if we do not place any upper constraint Du

on the delay with L = 500 and 2-gram features. This
histogram is obtained with zero false alarms and 100%
true positive. We can see that the delay mainly lies in
the range from 1000 to 2250. This experiment shows
that the anomaly detector is able to identify anomalies
within a very short time limit and also obtain a very
high detection accuracy. Table VII presents the average
detection delay D at zero FAR of the CUSUM test
and SR procedure for various choices of L, and we
can see that the difference of the average detection
delay between the CUSUM and SR procedure is very
small. Note that our anomaly detector only uses n-grams
observed in the benign training data, and we do not
use any “malicious” n-grams that only occur during the
execution of malware. Masquerade attacks, which mimic
the operations of the normal systems, try to perform
malicious activities using only the system calls that occur
frequently in the kernel of a malware-free device. Our
promising experiment results demonstrate the potential
capability in detecting such stealthy masquerade attacks.



500
1000

1500
2000

2500
3000

3500
4000

4500
5000

Delay D (by the amount of system calls)

10-4

10-3

10-2

10-1

100

Fr
eq

ue
nc

y

Fig. 5: Distribution of delayed system calls D of
CUSUM with 2-gram at TPR=100%, FAR=0% (L=500).

L 100 500 1000 5000 10000

1-gram CUSUM µD 9079 9746 2914 7052 10160
SR µD 9074 9640 2925 7063 10020

2-gram CUSUM µD 1213 1392 2076 5514 10000
SR µD 1219 1410 2094 5514 10000

TABLE VII: Compare the average detection delay µD
obtained of the CUSUM test and the SR procedure for
various observation window size L.

VI. CONCLUSIONS

Intelligent virtual assistants, such as Alexa-enabled
IoT devices, typically have specialized functionality
which makes their ordinary behavior easy to learn. A
semi-supervised anomaly detector, trained by ordinary
system call sequences generated by the IoT device’s
kernel, can effectively identify malware activities without
needing to have seen malware samples in training. In
this paper, we demonstrate the efficacy of an on-line
anomaly detector based on a one-class SVM combined
with the CUSUM test or the SR procedure to detect
malware infections on a voice controlled Alexa-enabled
IoT device. Our initial experimental results show that the
anomaly detector is capable of detecting the presence of
malware samples studied in this paper with significantly
high accuracy in a very short time, with only modest-
sized training data.

ACKNOWLEDGMENT
The authors would like to thank Ms. Rachelle St. Fleur

at Drexel University for helpful feedback to this paper.

REFERENCES

[1] S. O. Blog, “IoT devices being increasingly used for
ddos attacks,” http://www.symantec.com/connect/blogs/
iot-devices-being-increasingly-used-ddos-attacks, Sep 2016.

[2] Mirai-source-code. [Online]. Available: https://github.com/
jgamblin/Mirai-Source-Code

[3] “The internet of stings,” The Economist, October 2016.

[4] M. Kan, “Hackers create more IoT botnets with Mirai source
code,” ITworld, October 2016.

[5] T. Moffitt, “Source code for Mirai IoT malware released,”
Webroot Threat Blog, October 2016.

[6] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training
algorithm for optimal margin classifiers,” in COLT, 1992, pp.
144–152.

[7] E. Stehle, K. Lynch, M. Shevertalov, C. Rorres, and S. Man-
coridis, “Diagnosis of software failures using computational
geometry,” in IEEE/ACM ASE, Nov 2011, pp. 496–499.

[8] R. Canzanese, M. Kam, and S. Mancoridis, “Inoculation against
malware infection using kernel-level software sensors,” in ACM
ICAC, 2011, pp. 101–110.

[9] ——, “Multi-channel change-point malware detection,” in IEEE
SERE, June 2013, pp. 70–79.

[10] M. Christodorescu, S. Jha, and C. Kruegel, “Mining specifi-
cations of malicious behavior,” in ESEC-FSE companion ’07,
2007, pp. 5–14.

[11] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, “Data
mining methods for detection of new malicious executables,”
in IEEE S&P, May 2001, pp. 38–49.

[12] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis
for malware detection,” in ACSAC, Dec 2007, pp. 421–430.

[13] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection
using sequences of system calls,” Journal of Computer Security,
vol. 6, no. 3, pp. 151–180, 1998.

[14] N. Ye, X. Li, Q. Chen, S. M. Emran, and M. Xu, “Probabilistic
techniques for intrusion detection based on computer audit
data,” IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans, vol. 31, no. 4, pp. 266–274, 2001.

[15] R. Canzanese, M. Kam, and S. Mancoridis, “Toward an au-
tomatic, online behavioral malware classification system,” in
IEEE SASO, 2013.

[16] R. Canzanese, S. Mancoridis, and M. Kam, “Run-time classi-
fication of malicious processes using system call analysis,” in
MALWARE, 2015.

[17] Webroot, “2018 Webroot threat report.” [On-
line]. Available: https://www-cdn.webroot.com/9315/2354/
6488/2018-Webroot-Threat-Report US-ONLINE.pdf

[18] E. S. Page, “Continuous inspection schemes,” Biometrika,
vol. 41, no. 1/2, pp. pp. 100–115, 1954.

[19] A. N. Shiryaev, “The problem of the most rapid detection of
a disturbance in a stationary process,” in Soviet Math. Dokl,
vol. 2, no. 795-799, 1961.

[20] R. Canzanese, S. Mancoridis, and M. Kam, “System call-based
detection of malicious processes,” in IEEE QRS, Aug 2015, pp.
119–124.

[21] N. An, A. Duff, G. Naik, M. Faloutsos, S. Weber, and S. Man-
coridis, “Behavioral anomaly detection of malware on home
routers,” in 2017 12th MALWARE, Oct 2017, pp. 47–54.

[22] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola,
and R. C. Williamson, “Estimating the support of a high-
dimensional distribution,” Neural computation, vol. 13, no. 7,
pp. 1443–1471, 2001.

[23] Raspberry-Pi-Foundation, “BCM2836,” Oct. 2016. [On-
line]. Available: https://www.raspberrypi.org/documentation/
hardware/raspberrypi/bcm2836/README.md

[24] WikiDevi, “Amazon Echo Dot (RS03QR).” [Online]. Available:
https://wikidevi.com/wiki/Amazon Echo Dot (RS03QR)

[25] MediaTek, “Mediatek MT8163V/A for tablets.” [Online].
Available: https://www.mediatek.com/products/tablets/mt8163


