THE UNIX OPERATING SYSTEM

SE 101
Spiros Mancoridis
What is an OS?

- An operating system (OS) is software that manages the resources of a computer.
- Like most managers, the OS aims to manage its resources in a safe and efficient way.
- Examples of computer resources are: CPU, RAM, disk memory, printers, displays, keyboard, mouse, etc.
- The OS also isolates users and application programmers from the underlying computer.
Microsoft Windows

Unix

“When I said you will get an office with Windows I was referring to the operating system on the computer.”
Without an OS, every application would have to implement some part of this software hierarchy ...
UNIX

• A popular multi-user, multi-tasking OS

• Attributes: stability, portability, security

• Created at Bell Labs by Dennis Ritchie and Ken Thompson (won the ACM Turing Award in 1983)

• Unix is considered one of the greatest achievements in computer science

• Has been around since the 1960s in various forms, e.g., AIX, SCO Unix, SunOS, FreeBSD, OpenBSD, NetBSD, Linux, Mac OS X
Multiuser and Multitasking
Toolbox philosophy
Concise syntax
Designed by programmers for programmers
1983 ACM TURNING AWARD (UNIX)

- ACM is the Association for Computing Machinery
 - World’s largest educational and scientific computer society
 - You can become a student member too
 www.acm.org
- The ACM awards the Turing Award every year. It is the “Nobel Prize” of computing
- Named after british mathematician Alan M. Turing (1912-1954)
UNIX KERNEL

- Includes device drivers for computer hardware devices, e.g., graphics cards, network cards, disks
 - A device driver is a program that allows computer programs to interact with hardware devices
- CPU and memory management
- File system management
- Implements system calls that can be used by application programs and system utilities
WHAT’S INSIDE THE BOX?

- The von Neumann Architecture
- The OS hides this complexity from the programmer
UNIX SHELLS AND GUIs

- Shells are used for command line input/output to and from users
 - e.g., sh (Bourne shell), bash (Bourne again shell), csh (C shell), ksh (Korn shell)

- GUIs are used for graphical I/O
 - e.g., Linux KDE, GNOME, Mac OS Leopard
System utilities are specialized software tools (commands) e.g.,

- `ls`, `cp`, `grep`, `awk`, `bc`, `wc`, `more`, `rm`, `mkdir`, ...

Daemons provide remote network and administration services e.g.,

- `ssh` (remote login)
- `lpd` (remote printing)
- `httpd` (serves web pages)
UNIX APPLICATION PROGRAMS

- This is the software that users commonly interact with e.g.,
 - **vi** and **emacs** (text editors)
 - **gcc** (GNU C compiler)
 - **javac** (Java compiler)
 - **java** (Java run time virtual machine system)
A programming language is an artificial language designed to express computations that will be executed on a computer.

Programming languages have a syntax (form) and semantics (meaning).

Java and C are example programming languages.
A compiler is a computer program that transforms human readable source code of another computer program into machine readable code that a computer can execute.

The act of transforming source code into machine code is called compilation.
WHAT IS A VIRTUAL MACHINE?

- A virtual machine (VM) is a software implementation of a computer that executes programs like a physical computer.

- A system VM implements a complete computer that can support the execution of a real OS (e.g., vmware, KVM).

- A process VM is designed to run a single program (e.g., Java VM).

- Improves program portability, i.e., the ability to reuse software on a different platform with little or no modification.
Logging into Unix

`login: <type your user id>`
`password: <type your password>`

```
$ pwd
/home/spiros
$ exit
```
userid is the unique name of the user

password can be changed

password should only be known by user

system staff does not know user password, but they have the power to change it

Unix is case sensitive
Passwords ... Do

- Make sure no one is looking while you enter your password.
- Change your password often.
- Choose a password that you can remember.
- Use at least 8 characters (letters) in your password.
- Mix letters (upper and lower case) with digits and punctuation.
Passwords ... Don't

- Use a word that can be found in a dictionary
- Use a name
- Keep your password written on a piece of paper
- Use control characters
- Use personal information (e.g., address, birthday, name of pet)
- Ever give your password to anybody
CHANGING PASSWORD

- Use the Unix `passwd` command
- You will be prompted for both your current password (once) and your new password (twice)
- Change your initial password immediately
Logging out of UNIX

- logout leaves the system
- exit quits the shell
- ^D same as logout, but often disabled
UNIX COMMANDS

- `$ command -options targets`
- `man` man (a manual on the Unix manual)
 - There should be a man page for every Unix command e.g., `man ls`
- Read the man pages, they are very useful and convenient
Some Unix Commands

passwd
date
hostname
who
last
finger
w
clear
cal
bc -l
history
ssh

Try these Unix commands and see what they do ...
The man pages can give you details on how to use these (and other) commands
UNIX FILESYSTEM

- **Ordinary Files**
 - Files contain data, program code, etc
 - File names cannot have the ‘/’ character in them

- **Directories**
 - Contain files and other directories

- **Links**
 - A link is a pointer reference to another file (like an alias)

- **Devices**
 - Allows applications to access hardware devices
Unix Directories

/ The "root" directory

/bin Essential low-level system utilities

/usr/bin Higher-level system utilities and application programs

/sbin Superuser system utilities (for performing system administration tasks)

/lib Program libraries (collections of system calls that can be included in programs by a compiler) for low-level system utilities

/usr/lib Program libraries for higher-level user programs

/tmp Temporary file storage space (can be used by any user)

/home User home directories containing personal file space for each user. Each directory is named after the login of the user.

/etc UNIX system configuration and information files

/dev Hardware devices

/proc A pseudo-filesystem which is used as an interface to the kernel. Includes a subdirectory for each active program (or process).
USEFUL UNIX FILESYSTEM COMMANDS

$ cd /usr/bin

$ pwd
/usr/bin

$ cd /

$ ls
bin/ lib/ media/ proc/ selinux/ sys/ var/ boot/ dev/ homes/ lib32/ mnt/ root/ site/ tmp/ etc/ opt/ sbin/ srv/ usr/

$ man ls
An example of the output is of `ls -l` is:

drwxr-xr-x 3 spiros serg 238 May 5 2:05 license.dat

- **type** is a single character which is either 'd' (directory), '-' (ordinary file), 'l' (symbolic link).

- **permissions** is a set of characters describing access rights. There are 9 permission characters, describing 3 access types given to 3 user categories. The three access types are read ('r'), write ('w') and execute ('x'), and the three users categories are the user who owns the file, users in the group that the file belongs to and other users (the general public). An 'r', 'w' or 'x' character means the corresponding permission is present; a '-' means it is absent.

- **links** refers to the number of filesystem links pointing to the file or directory.

- **owner** is the user who created the file or directory.

- **group** denotes a collection of users who are allowed to access the file according to the group access rights specified in the permissions field.

- **size** is the length of a file, or the number of bytes used by the operating system to store the list of files in a directory.

- **date** is the date when the file or directory was last modified. The `-u` option display the time when the file was last accessed (read).

- **name** is the name of the file or directory.
USEFUL UNIX FILESYSTEM COMMANDS

- **cd path**
 (change directory to *path*)

- **mkdir directory**
 (make a new directory)

- **rmdir directory**
 (remove a directory)

- **cp source-file destination-file**
 (copy source-file into destination-file)

- **cp source-file(s) destination-directory**
 (copy source files into destination-directory)
USEFUL UNIX FILESYSTEM COMMANDS

- **mv** source destination
 (move/rename source file or directory to destination file or directory)

- **rm** file(s)
 (remove/delete files)

- **rm** -rf directory
 (remove entire directory)

- **cat** target-file(s)
 (concatenate target files and display them on the screen)

- **cat** target-file(s) > output.txt
 (store concatenation to output file)
USEFUL UNIX FILESYSTEM COMMANDS

- **ln -s filename linkname**
 (create a pointer to filename and call it linkname)

- **cat ?piros**
 (concatenates all files that start with any character and end with piros)

- **cat * **
 (concatenates all files in the current directory)

- **ls [a-c]*[x-z]**
 (lists files that start with a letter from a-c and end with a letter from x-z)
File and Directory Permissions

- **chmod options files**
 - for options u (user), g (group), o (other), a (all), r (read), w (write), x (execute), + (add permission), - (remove permission), = (assign permission)

- What does `chmod ug=rw, o-rw, a-x *.txt` do?

- How about `chmod -R go+r dir`?

- How about `chmod 600 private.txt`?

- **chgrp group file(s)**
 (changes the group permissions for the files, works with -R option)
UNIX FILE COMMANDS

- **file** filename(s)
 (reports on the type of a file e.g., text, HTML, Java source code)

- **head** -num filename
 (displays the first *num* lines of a file)

- **tail** -num filename
 (displays the last *num* lines of a file)

- **tail** -f filename
 (continuously outputs the last few lines of a file being modified)
THE UNIX FIND COMMAND

- **find directory -name targetfile -print**
 (look for `targetfile` in any part of the directory rooted at `directory`), e.g.,
 - **find /home -name "*.java" -print**

- **which command**
 (gives path where the executable code of `command` resides), e.g.,
 - **which ls** (should return `/bin/ls**)
Unix Grep Command

- **grep** options pattern files
 (searches the files for lines that match a given pattern). e.g.,

 - **grep** Drexel *.txt
 - **grep** Drexel `find . -name “*.txt” -print`
 - **grep** -i drexel *.txt
UNIX SORT COMMAND

- **sort filename(s)**
 (sorts line in a group of concatenated files alphabetically)

- **sort -n filename(s)**
 (sorts line in a group of concatenated files numerically)

- **uniq filename**
 (removes duplicate adjacent lines from a file)

- **sort in1.txt in2.txt > out.txt**
UNIX FILE ARCHIVING

- **tar -cvf archivename filenames**
 (create archive from a list of files or directories)

- **tar -tvm archivename**
 (list contents of an archive)

- **tar -xvf archivename**
 (extract and restore archive)

- **tar -cvf code.tar src**

- **tar -xvf code.tar**
UNIX FILE COMPRESSSION

- **zip** `filename.zip` `directory/*`
 (compresses contents of directory and store them in `filename.zip`)

- **unzip** `filename.zip`
 (uncompress contents of `filename.zip`)

- Other Unix compression tools are:
 - **gzip**
 - **compress**
UNIX PROCESSES

- You can get the status and process id of each process running on the system

- Check the man pages because options for `ps` may vary from one Unix system to another

 - `ps auxw`

 - `ps -ef`

- To terminate a process use the `kill` command

 - `kill -9 process-id`
- `lpr -Pprinterid filename`
- `lpq -Pprinterid [job#] [userid]`
- `lprm -Pprinterid [job#] [userid]`
The vi text editor (pronounced V-I)

- To run vi type the following on the command line:

 $ vi filename

- vi has three modes:

 - command mode:

 - to navigate through the document

 - insert mode:

 - to add text to the document

 - command line mode:

 - to perform manipulations on the files (e.g., search, save)
THE THREE MODES OF VI

- **Command Mode**
- **Text Insertion Mode**
- **Line Command**

- ZZ
- return
- ESC
MOVING THE CURSOR

- You can use your arrow keys
- Or you can use the h, j, k, l keys
 - h move left one space
 - j move down one space
 - k move up one space
 - l move right one space
- You can move faster by typing 5 h to move left 5 spaces, etc
Moving the Cursor

- ^F go forward in the document by 1 screen
- ^B go backward in the document by 1 screen
- ^D go down in the document by half a screen
- ^U go up in the document by half a screen

Note that ^ means hold the control key down e.g., ^F means hold the control key down and press F. The F,B,D,U characters are non case sensitive
MOVING THE CURSOR

- **G** go to the last line in the file
- **n G** go to the \(n^{th}\) line in the file
- **$** go to the end of the current line
- **^** go to the beginning of current line (use carat key not control key)
- **0** same as ^, go to beginning of current line
- **w** forward one word, use **n w** to go forward \(n\) words
- **b** backward one word, use **n b** to go backward \(n\) words
- **e** go to end of the word
INSERTING TEXT

- **i** insert text before the cursor
- **a** append text after the cursor
- **I** insert text at the beginning of line
- **A** append text at the end of line
- **o** open new line after current line
- **O** open new line before current line
DELETING TEXT

- **dd** delete current line
- **n dd** delete *n* lines starting from the current line
- **dw** delete word
- **n dw** delete *n* next words
- **D** delete from cursor to the end of current line
- **x** delete current character
- **n x** delete next *n* characters
- **X** delete previous character (backspace)
CHANGING TEXT

- **cw**: change current word
- **n cw**: change *n* words starting at current word
- **c$**: change from cursor to the end of line
- **~**: change case of character
- **J**: join next line to the current line
- **u**: undo last command
- **n u**: undo last *n* commands
CHANGING TEXT

- . repeat last change
- yy yank current line into a storage buffer (copy)
- n yy yank next n lines into a storage buffer
- yw yank current word into a storage buffer
- n yw yank next n lines into a storage buffer
- p put yanked buffer text (or deleted text) after cursor
- P put yanked buffer text (or deleted text) before cursor
MANIPULATING FILES

- `:w` write file to disk (save)
- `:wq` write file to disk (save), then exit vi (quit)
- `:w!` force overwrite of file
- `:q` quit vi if no changes have been made
- `:q!` quit vi without saving any of the changes
- `:! command` escape to shell and run command
- `:r! command` insert the result of command at current cursor position