Introduction to Software Testing

[Reading assignment: Chapter 1, pp. 9-22]
What is a computer bug?

• In 1947 Harvard University was operating a room-sized computer called the Mark II.
 – mechanical relays
 – glowing vacuum tubes
 – technicians program the computer by reconfiguring it
 – Technicians had to change the occasional vacuum tube.

• A moth flew into the computer and was zapped by the high voltage when it landed on a relay.

• Hence, the first computer bug!
 – I am not making this up :-(
Bugs a.k.a. …

- Defect
- Fault
- Problem
- Error
- Incident
- Anomaly
- Variance

- Failure
- Inconsistency
- Product
 Anomaly
- Product
 Incidence
- Feature :-}
Defective Software

• We develop programs that contain defects
 – How many? What kind?
• Hard to predict the future, however… it is highly likely, that the software we (including you!) will develop in the future will not be significantly better.
Sources of Problems

• **Requirements Definition:** Erroneous, incomplete, inconsistent requirements.

• **Design:** Fundamental design flaws in the software.

• **Implementation:** Mistakes in chip fabrication, wiring, programming faults, malicious code.

• **Support Systems:** Poor programming languages, faulty compilers and debuggers, misleading development tools.
Sources of Problems (Cont’d)

- **Inadequate Testing of Software:** Incomplete testing, poor verification, mistakes in debugging.

- **Evolution:** Sloppy redevelopment or maintenance, introduction of new flaws in attempts to fix old flaws, incremental escalation to inordinate complexity.
Adverse Effects of Faulty Software

- **Communications:** Loss or corruption of communication media, non delivery of data.
- **Space Applications:** Lost lives, launch delays.
- **Defense and Warfare:** Misidentifivation of friend or foe.
Adverse Effects of Faulty Software (Cont’d)

- **Transportation**: Deaths, delays, sudden acceleration, inability to brake.
- **Safety-critical Applications**: Death, injuries.
- **Electric Power**: Death, injuries, power outages, long-term health hazards (radiation).
Adverse Effects of Faulty Software (Cont’d)

- **Money Management:** Fraud, violation of privacy, shutdown of stock exchanges and banks, negative interest rates.
- **Control of Elections:** Wrong results (intentional or non-intentional).
- **Control of Jails:** Technology-aided escape attempts and successes, accidental release of inmates, failures in software controlled locks.
- **Law Enforcement:** False arrests and imprisonments.
Bug in Space Code

- Project Mercury’s FORTRAN code had the following fault:
 \[\text{DO I=1.10 instead of } \text{DO I=1,10} \]
- The fault was discovered in an analysis of why the software did not seem to generate results that were sufficiently accurate.
- The erroneous 1.10 would cause the loop to be executed exactly once!
Military Aviation Problems

• An F-18 crashed because of a missing exception condition:
 if ... then ... without the else clause that was thought could not possibly arise.

• In simulation, an F-16 program bug caused the virtual plane to flip over whenever it crossed the equator, as a result of a missing minus sign to indicate south latitude.
Year Ambiguities

- In 1992, Mary Bandar received an invitation to attend a kindergarten in Winona, Minnesota, along with others born in '88.
- Mary was 104 years old at the time.
Year Ambiguities (Cont’d)

• Mr. Blodgett’s auto insurance rate tripled when he turned 101.
• He was the computer program’s first driver over 100, and his age was interpreted as 1.
• This is a double blunder because the program’s definition of a teenager is someone under 20!
Dates, Times, and Integers

• The number $32,768 = 2^{15}$ has caused all sorts of grief from the overflowing of 16-bit words.

• A Washington D.C. hospital computer system collapsed on September 19, 1989, 2^{15} days after January 1, 1900, forcing a lengthy period of manual operation.
Dates, Times, and Integers (Cont’d)

- COBOL uses a two-character date field…
- The Linux term program, which allows simultaneous multiple sessions over a single modem dialup connection, died world wide on October 26, 1993.
- The cause was the overflow of an int variable that should have been defined as an unsigned int.
Shaky Math

• In the US, five nuclear power plants were shut down in 1979 because of a program fault in a simulation program used to design nuclear reactor to withstand earthquakes.

• This program fault was, unfortunately, discovered after the power plants were built!
Shaky Math (Cont’d)

• Apparently, the arithmetic sum of a set of numbers was taken, instead of the sum of the absolute values.

• The five reactors would probably not have survived an earthquake that was as strong as the strongest earthquake ever recorded in the area.
Therac-25 Radiation “Therapy”

- In Texas, 1986, a man received between 16,500-25,000 rads in less than 1 sec, over an area of about 1 cm.
- He lost his left arm, and died of complications 5 months later.
- In Texas, 1986, a man received at least 4,000 rads in the right temporal lobe of his brain.
- The patient eventually died as a result of the overdose.
Therac-25 Radiation “Therapy” (Cont’d)

• In Washington, 1987, a patient received 8,000-10,000 rads instead of the prescribed 86 rads.

• The patient died of complications of the radiation overdose.
AT&T Bug: Hello? ... Hello?

• In mid-December 1989, AT&T installed new software in 114 electronic switching systems.

• On January 15, 1990, 5 million calls were blocked during a 9 hour period nationwide.
AT&T Bug (Cont’d)

• The bug was traced to a C program that contained a `break` statement within an `switch` clause nested within a loop.

• The `switch` clause was part of a loop. Initially, the loop contained only `if` clauses with `break` statements to exit the loop.

• When the control logic became complicated, a `switch` clause was added to improve the readability of the code ...
Bank Generosity

• A Norwegian bank ATM consistently dispersed 10 times the amount required.

• Many people joyously joined the queues as the word spread.
Bank Generosity (Cont’d)

• A software flaw caused a UK bank to duplicate every transfer payment request for half an hour. The bank lost 2 billion British pounds!

• The bank eventually recovered the funds but lost half a million pounds in potential interest.
Making Rupee!

• An Australian man purchased $104,500 worth of Sri Lankan Rupees.
• The next day he sold the Rupees to another bank for $440,258.
• The first bank’s software had displayed a bogus exchange rate in the Rupee position!
• A judge ruled that the man had acted without intended fraud and could keep the extra $335,758!
Bug in BoNY Software

• The Bank of New York (BoNY) had a $32 billion overdraft as the result of a 16-bit integer counter that went unchecked.

• BoNY was unable to process the incoming credits from security transfers, while the NY Federal Reserve automatically debited BoNY’s cash account.
Bug in BoNY Software (Cont’d)

• BoNY had to borrow $24 billion to cover itself for 1 day until the software was fixed.

• The bug cost BoNY $5 million in interest payments.
Discussion …

• Have you heard of other software bugs?
 – In the media?
 – From personal experience?

• Does this embarrass you as a future software engineer?
Specification
“if you can’t say it, you can’t do it”

• You have to know what your product is before you can say if it has a bug.

• A *specification* defines the product being created and includes:
 – Functional requirements that describes the features the product will support. E.g., on a word processor
 • Save, print, check spelling, change font, …
 – Non-functional requirements are constraints on the product. E.g,
 • Security, reliability, user friendliness, platform, …
A software bug occurs when at least one of these rules is true

- The software does not do something that the specification says it should do.
- The software does something that the specification says it should not do.
- The software does something that the specification does not mention.
- The software does not do something that the product specification does not mention but should.
- The software is difficult to understand, hard to use, slow …
Most bugs are not because of mistakes in the code …

• Specification (~= 55%)
• Design (~= 25%)
• Code (~= 15%)
• Other (~= 5%)
Relative cost of bugs
“bugs found later cost more to fix”

• Cost to fix a bug increases exponentially (10^x)
 – i.e., it increases tenfold as time increases
• E.g., a bug found during specification costs 1 to fix.
• … if found in design cost is 10
• … if found in code cost is 100
• … if found in released software cost is 1000
Bug Free Software

• Software is in the news for the wrong reason
 – Security breach, Mars Lander lost, hackers getting credit card information, etc.

• Why can’t software engineers develop software that just works?
 – As software gets more features and supports more platforms it becomes increasingly difficult to make it create bug-free.
Discussion …

• Do you think bug free software is unattainable?
 – Are there technical barriers that make this impossible?
 – Is it just a question of time before we can do this?
 – Are we missing technology or processes?
Goal of a software tester

• … to *find* bugs
• … as *early* in the software development processes as possible
• … and make sure they get *fixed*.

• **Advice:** Be careful not to get caught in the dangerous spiral of unattainable perfection.
What to look for when interviewing someone for the position of software tester

- Are they explorers?
- Are they troubleshooters?
- Are they relentless?
- Are they creative?
- Are they perfectionists (within reason)?
- Do they exercise good judgment?
- Are they tactful and diplomatic?
- Are they persuasive?
You now know …

• … what is a bug
• … the relationship between specification and bugs
• … the cost of a bug relative to when it is found
• … the unattainable goal of perfect software
• … the goal of the software tester
• … valuable attributes of a software tester
The Software Development Process

[Reading assignment: Chapter 2, pp. 23-36]
Software is …

- requirements specification documents
- design documents
- source code
- test suites and test plans
- interfaces to hardware and software operating environment
- internal and external documentation
- executable programs and their persistent data
Software effort

- Specification
- Product reviews
- Design
- Scheduling
- Feedback
- Competitive information acquisition
- Test planning
- Customer surveying
- Usability data gathering
- Look and feel specification
- Software architecture
- Programming
- ...
Discussion …

• What is software engineering?
• Where does testing occur in the software development process?
Customer requirements

• *The software development team must determine what the customer wants.*

• How can you do this?
 – Guess?
 – Collect detailed information from surveys?
 – Get feedback from a previous version of the software?
 – Read reviews in magazines?
 – Get information about the competition?
 – Other ways?

• The collected data is used to guide the specification effort.
Specification

“If you don't know where you're going any road will take you there”

- The specification takes the data from the customer requirements and other sources and defines:
 - The features of the software (functional requirements).
 - The constraints on these features (non-functional requirements).

- Specifications can be:
 - formal (e.g., aerospace industry), rigid
 - informal (e.g., a .com start up), on a cocktail napkin or a whiteboard.
Schedules

• The goals of scheduling are to know:
 – What work needs to be completed?
 – How much work is left to do?
 – When will the work be finished?
 – Who will finish each task?
 – Other measurable queries.

• A **Gantt chart** is a popular type of bar chart that illustrates a project schedule.
Design

• Before coding begins on non-trivial software projects, a set of design documents are created to serve as blueprints.
 – Software Architecture
 – Data flow diagram
 – State transition diagram
 – Flowchart
 – Commented code
Source code … of course

• The ultimate specification of the software!
• ‘Code is king’ philosophy still prevalent.
• Many programming languages and tools to choose from.

```java
/**
 * Simple HelloButton() method.
 * @version 1.0
 * @author john doe <doe.j@example.com>
 */

public void helloButton()
{
    JButton hello = new JButton("Hello, wor
    hello.addActionListener( new HelloBtnList

    // use the JFrame type until support for i
    // new component is finished
    JFrame frame = new JFrame("Hello Button"
    Container pane = frame.getContentPane();
    pane.add( hello );
    frame.pack();
    frame.show(); // display the fra
}
Test documents

• Test plan
  – Quality objectives, resource needs, schedules, assignments, methods, etc.

• Test cases
  – Inputs and expected outputs.

• Bug reports
  – E.g., the Bugzilla web-based bug tracker.

• Test tools and automation

• Metrics, statistics, and summaries
  – Number of unresolved bugs, mean time to repair a bug, etc.
Software Project Staff

- Project managers
  - Write product specification, manage the schedule, critical decision tradeoffs
- Software architects, system engineers
  - Design the software, work closely with programmers
- Programmers, developers, coders
  - Write code, fix bugs
- Testers, quality assurance staff
  - Find bugs, document bugs, track progress of open bugs
- Technical writers
  - Write manuals, online documentation
- Configuration managers, builders
  - Packaging and code, documents, and specifications
Software Development Lifecycles

- Code and Fix
- Waterfall
- Spiral
You now know …

• … what is software
• … what is software engineering
• … what is the composition of a software development organization
• … what are the major phases of a software development project
• … how major phased are organized