Lecture 10: Intelligent Interfaces

Intelligent interfaces

- What is not an intelligent interface?
 - any “intelligent system”
 - something that strives to pass the Turing Test
 - e.g., expert system
 - e.g., neural network
 → doesn’t necessarily include an interface
 - any “good interface”
 - that is, a well-designed interface
 → doesn’t necessarily include intelligence

Thanks to Annika Wærn for material from her document “What is an intelligent interface?”

Intelligent interfaces

- Today’s intelligent interfaces utilize...
 - user adaptivity to change behavior for different users and situations
 - user modeling to maintain dynamic knowledge about user knowledge, preferences, etc.
 - natural language technology to interpret and/or generate text and/or speech
 - dialog modeling to maintain a dynamic multimodal interaction with the user
 - explanation generation to ensure that the user understands what is happening

Intelligent interfaces

- Creating good, interactive intelligence is challenging.
- Let’s say we have a menu of options...
- How might this adapt in an intelligent way?
Example: Intelligent help

- Help doesn’t have to be intelligent — e.g., searchable index / table of contents
- Intelligent help can consider context or provide human-like dialog for searching

Example: MS PowerPoint help...

I tried to change the margins for text inside an AutoShape, text box, or table, but nothing happened.
The margins between the text and object are adjusted only when the Russian AutoShape for Fit Text is selected:

1. Select the object.
2. Choose More AutoShape Formatting...
3. Set the Normal text, AutoShape, Text Box, or Table object to the desired AutoShape for Fit Text (2007 onwards).

Note: If your user interface appears right and the left margin of the AutoShape changes, or only shows 0, then you need to use Russian PowerPoint. Russian PowerPoint options are found in the Options menu in Russian PowerPoint.

Example: MS Word help...

How do I track changes in a word document without revision marks appearing?

1. Enable Track Changes in a Word document without revision marks.
2. Print a document without Track Changes.
3. Click the track changes option on the Page Layout menu, then select the Track Changes as shown above, and turn on the Track Changes option.
4. If the document options, turn off the track changes, then click the Show/Hide button on the Track Changes toolbar, and turn on the Track Changes option.
Example: Information filtering

Amazon.com

Example: Intelligent tutoring

"Skill-o-meter"

"Solver"

"Worksheet"

Intelligent tutoring

- The “two-sigma effect” of human tutoring
 Students who receive one-on-one instruction perform two standard deviations better than students who receive traditional classroom instruction.

- Advantages of a computer tutor
 - a teacher for every student? not feasible.
 - a computer tutor for every student? sure!
 - enables practice, practice, practice on possibly large (or infinite) database of problems
 - but can also answer questions, provide guidance
 - more “human-like”, personalized instruction than a simple computer practice application

Computer tutor components

- What makes up a computer tutor?
 Pedagogical Knowledge
 Student Knowledge
 Domain Knowledge
Computer tutor components

- But specifically, a computer tutor can be boiled down to 2 main components:
 - (1) User model
 - computational representation for what the student knows and doesn’t know
 - (2) Model tracing
 - update the student model by associating observed student actions with model predictions

(1) User model

- How can we represent student intelligence?
- Lots of programs do “intelligent” things
 - add really big numbers really quickly
 - diagnose patient symptoms
 - predict earthquakes, volcanic eruptions
 - etc., etc., etc. ...
- Typically, they don’t do things like humans
 - sometimes, methods inspired by humans
 - e.g., neural networks
 - but usually, the goal is to solve a problem, not represent human knowledge

Example: Playing chess

- Computers search lots and lots of possible moves and their implications
- This can beat the best human players.
- But how do humans play chess?

Example: Sorting numbers

- Please write down these numbers:
 - 23 78 32 44 52 17 89 41
- Now sort them in increasing order...
Example: Sorting numbers

- How did you do it?

 17 23 32 41 44 52 78 89

- Computers: many efficient algorithms
 - you know Quicksort

- Humans (often): find smallest, write it, find 2nd smallest, write it, ...
 - not nearly as efficient as Quicksort!
 - so why don’t we use Quicksort?
 too many things to track, especially in your head

Creating a human-like user model

- Humans have many limitations
 - cognition (e.g., recall 7±2 digits)
 - perception (e.g., the eye’s fovea)
 - attention (e.g., conversing while typing)
 - behavior (e.g., typing speed)

- For machines to think & act like people, they need to incorporate these limitations.
 - are you telling me we should build machines that make mistakes?!?
 - well, they don’t need to make mistakes,
 just explain and predict them

Cognitive architectures

- Frameworks for building computer models of how people (e.g., students) think and act
- Serve two purposes
 - explain cognition with a psychological theory
 - simulate cognition with computer models
- Incorporate human abilities & limitations!
 - abilities: learning & speedup, pattern matching, ...
 - limitations: memory decay, physical constraints, ...

Categories of cognitive architectures

- Symbolic
 - representation based on symbols & relations
 - e.g., Harrisburg, capital, Pennsylvania

- Connectionist
 - representation based on connected nodes
 - e.g., neural networks

- Hybrid
 - some mix of symbolic and connectionist
 - what most architectures strive for today

Note: These categories are very broad and there’s lots of gray area!
Production system architectures

- **Key:** Represent skills as production rules (or simply “productions”)
- **Production = conditions + actions**
 - when conditions are satisfied, actions “fire”

Advantages of production systems
- parallel and serial processing
- independence of production rules
- interruptible and flexible control

Components of a production system

- **Declarative knowledge**
 - consists of “chunks”
 - simple facts: “2 + 3 = 5”
 - knowledge of situation: “Mary is in front of me”
 - current and past goals:
 - “add two numbers”
 - goal stack: push & pop

- **Procedural knowledge**
 - consists of productions
 - production = condition-action rule
 - actions can act upon physical world or change memory contents

Declarative knowledge

- **Chunks comprising:**
 - chunk type: what kind of chunk is it?
 - slots: what information does the chunk contain?
 - slot values: what are the actual units in the slots?

- TWO: isa number
- THREE: isa number
- FIVE: isa number

- TWO + THREE: isa addend1
 - addend2: sum
 - plus-fact: chunk type
 - slot values

Procedural knowledge

- **Productions (rules) comprising:**
 - left-hand side = matching: goal + other chunks
 - right-hand side = acting: motor + memory

- **ADD-NUMBERS**
 - IF current goal is to add n1 and n2 and we can retrieve a plus-fact for n1 and n2
 - THEN get the sum in the plus-fact and type the sum

Production system example

Declarative Knowledge

<table>
<thead>
<tr>
<th>GOAL</th>
<th>isa add-numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWO+THREE</td>
<td>isa plus-fact</td>
</tr>
<tr>
<td>addend1</td>
<td>TWO</td>
</tr>
<tr>
<td>addend2</td>
<td>THREE</td>
</tr>
<tr>
<td>sum</td>
<td>FIVE</td>
</tr>
<tr>
<td>FIVE+SIX</td>
<td>isa plus-fact</td>
</tr>
<tr>
<td>addend1</td>
<td>FIVE</td>
</tr>
<tr>
<td>addend2</td>
<td>ONE</td>
</tr>
<tr>
<td>sum</td>
<td>ELEVEN</td>
</tr>
</tbody>
</table>

Procedural Knowledge

<table>
<thead>
<tr>
<th>IF</th>
<th>ADD-COLUMN=10</th>
</tr>
</thead>
<tbody>
<tr>
<td>THEN</td>
<td>write sum in column & set carry to 0</td>
</tr>
<tr>
<td>IF</td>
<td>ADD-COLUMN=10</td>
</tr>
<tr>
<td>THEN</td>
<td>write sum in column & set carry to 1</td>
</tr>
<tr>
<td>IF</td>
<td>DONE-ADDITION-CARRY=0</td>
</tr>
<tr>
<td>THEN</td>
<td>done problem!</td>
</tr>
<tr>
<td>IF</td>
<td>DONE-ADDITION-CARRY=1</td>
</tr>
<tr>
<td>THEN</td>
<td>done problem!</td>
</tr>
</tbody>
</table>

Production system example

Problem

| 25 | *36 |

Trace

IF	ADD-COLUMN=10
THEN	retrieves 5+6=11
THEN	writes 1, sets carry to 1
IF	ADD-COLUMN=10
THEN	retrieves 2+3=5, adds 1
THEN	write 6, sets carry to 0
THEN	DONE-ADDITION-CARRY=0
THEN	done problem!
IF	DONE-ADDITION-CARRY=1
THEN	done problem!

Limitations: Symbolic knowledge

- The most basic limitation is when the model doesn’t know something
 - declarative: absence of factual chunks
 - procedural: absence of skills

Overcoming the limitation

- acquiring new knowledge through...
 - direct perception
 - indirect inference / reasoning (analogy, metaphor, discovery, etc.)
 - compilation of declarative → procedural
 - e.g., driving with a stick-shift

Limitations: “Subsymbolic” parameters

- Typically, we have “subsymbolic” parameters (i.e., numeric values) associated with symbols

Example: Declarative chunk “activation”

- represents how easily chunk can be remembered
- changes over time with learning

TWO+THREE	isa plus-fact
addend1	TWO
addend2	THREE
sum	FIVE
Activation	3.24
Limitations: “Subsymbolic” parameters

- Example: Production rule “strength”
 - represents how quickly production fires
 - increases over time with practice
 - very much analogous to chunk activation!

Limitations: Perceptual-motor abilities

- Modules allow model to interact with a (real or simulated) external environment
- Modules include performance parameters & very limited parallelism

(2) Model tracing

- Model tracing = relating observed actions with hidden cognitive states
- In essence, “think” along with student and keep track of the cognitive state
- From a given point in time...
 - simulate all possible “thought” sequences (i.e., all possible firings for productions)
 - determine which sequence best matches the actions observed from the student
 - make the best matching sequence the current “estimated” cognitive state
- What is “cognitive state” in this case?
Model tracing

- **Major challenges**
 - what about “buggy” paths?
 - need to be incorporated!
 - more about this in a bit...
 - usually assume that one action = one rule firing; what is the general case?
 - what types of “observable actions” should be considered?
 - what about noisy data?
 - e.g., eye-movement data

Knowledge tracing

- Sounds similar, but very different from model tracing
- Knowledge tracing = maintaining estimates on how well students know certain skills
- the “skill-o-meter”
- example: algebra word problems

- Include “buggy” rules in our model
- Include help to go with these rules if fired

Handling errors

- Include “buggy” rules in our model
- Include help to go with these rules if fired
Field tests: LISP tutor

- Step-by-step tutor with “structured editor”
 - top-down approach to coding

    ```lisp
    (defun create-list (num)
       ;;BODY;;
    
    (defun create-list (num)
       (let ((<<INITIALIZATIONS>>)
            ;;BODY;;)
    
    (defun create-list (num)
       (let ((count 1))
            ;;BODY;;)
    
    ... etc.
    ...
    ```

Field tests: LISP tutor

- Results
 - mini-course at CMU with LISP tutor
 - two groups in course, with & without tutor
 - group with tutor took 30% less time to complete a sequence of prescribed lessons
 - AND group with tutor scored 43% = 1 std dev higher on the post-test!
 - learned faster, and the knowledge stayed with them!

More tutors in the field

- Geometry tutor
 - 14 extra points (out of 100) for tutored students
 - actually, only 1-on-1 tutoring; 2-on-1, only 4 pts
- Algebra tutor
 - no differences for tutoring
 - problems: interface differences, truancy
- Carnegie Learning
 - company spun-off from this and other research
 - tutors in several (mostly mathematical) areas with integrated curriculum (textbooks, etc.)
 - now serving >400 schools nationwide!

Current limitations

- Not a human! Can’t (yet) sense emotion, etc.
 - is this always bad though?
- When/how to guide student from passively absorbing knowledge to actively using it
- When/how to correct errors
Take-home message

- Intelligent interfaces use understanding of the current situation to act intelligently
 - this may include user knowledge & skills, current context, adaptation & learning, ...

- Intelligent computer tutors are one good example of an intelligent interface...
 - they utilize a user model of student knowledge
 - they relate user actions to this model to infer current knowledge and goals